
PICACHU: Plug-In CGRA Handling Upcoming
Nonlinear Operations in LLMs

Jiajun Qin∗
New York University
New York, NY, USA
hobbitqia@gmail.com

Tianhua Xia
New York University
New York, NY, USA
tx856@nyu.edu

Cheng Tan†
Google

Mountain View, CA, USA
chengtan@google.com

Jeff Zhang
Arizona State University

Tempe, AZ, USA
jeffzhang@asu.edu

Sai Qian Zhang
New York University
New York, NY, USA
sai.zhang@nyu.edu

Abstract
Large language models (LLMs) have revolutionized natural
language processing (NLP) domain by achieving state-of-
the-art performance across a range of benchmarks. However,
nonlinear operations in LLMs significantly contribute to in-
ference latency and present unique challenges that have not
been encountered previously. Addressing these challenges
requires accelerators that combine efficiency, flexibility, and
support for user-defined precision. Our analysis reveals that
Coarse-Grained Reconfigurable Arrays (CGRAs) provide an
effective solution, offering a balance of performance and
flexibility tailored to domain-specific workloads.

This paper introduces PICACHU, a plug-in coarse-grained
reconfigurable accelerator tailored to efficiently handle non-
linear operations by using custom algorithms and a dedicated
compiler toolchain. PICACHU is the first to target all non-
linear operations within LLMs and to consider CGRA as a
plug-in accelerator for LLM inference. Our evaluation shows
that PICACHU achieves speedups of 1.86× and 1.55× over
prior state-of-the-art accelerators in LLM inference.

CCS Concepts: • Hardware → Application specific in-
struction set processors; • Computer systems organiza-
tion → Single instruction, multiple data; • Computing
methodologies → Neural networks.

Keywords: Domain Specific Architecture (DSA), Coarse-
Grained Reconfigurable Array (CGRA), Large LanguageMod-
els (LLM)

∗Also with Zhejiang University.
†Also with Arizona State University.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/2025/03
https://doi.org/10.1145/3676641.3716013

ACM Reference Format:
Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, and Sai Qian Zhang.
2025. PICACHU: Plug-In CGRA Handling Upcoming Nonlinear
Operations in LLMs. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’25), March 30-April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3676641.3716013

1 Introduction
In the past decade, the landscape of artificial intelligence (AI)
has undergone a profound transformation, with Transformer-
based Large Language Models (LLMs) redefining the ca-
pabilities of AI. These models have emerged as powerful
tools across various domains, including natural language
processing (NLP) [14, 20, 50, 60, 84, 87, 88, 117, 123, 124]
and computer vision (CV) [2, 8, 21, 66, 68, 121, 137], reshap-
ing both industry and human life. Despite their transforma-
tive potential, transformer-based models pose substantial
challenges due to their higher computational complexity
relative to traditional neural networks like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). This underscores the growing demand for hard-
ware acceleration. In response, the focus of AI accelerator
development has increasingly shifted toward optimizing per-
formance for transformer-based LLMs, which blend linear
operations, such as matrix multiplication, with nonlinear
operations like softmax and normalization, marking a signif-
icant trend in AI hardware innovation.

Although numerous hardware accelerators have been ex-
plored recently, the majority have focused primarily on
enhancing the efficiency of General Matrix Multiplication
(GEMM) operations [30, 31, 39, 59, 98, 138], often through
algorithmic approaches such as pruning [32, 70, 72, 85, 86,
119, 149, 151], quantization [23, 30, 53, 65, 130, 139, 147, 152],
and dataflow optimization [33, 36, 105, 133]. However, few
of these studies have delved deeply into the implementation
of nonlinear operations. As highlighted by early works [28,
49, 75, 136], during LLMs inferencing, nonlinear operations
account for an even greater share of the computational and

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716013
https://doi.org/10.1145/3676641.3716013

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

Categories Nonlinear Operations Mathematical Operator Representative LLMs

Activation
Function

Softmax(𝑥𝑖) := exp(𝑥𝑖)∑𝑘
𝑗=1 exp(𝑥 𝑗)

=
exp(𝑥𝑖−𝑢)∑𝑘
𝑗=1 exp(𝑥 𝑗−𝑢)

;

𝑢 = max𝑗=1 𝑥 𝑗
Division, Exponential All

ReLU(𝑥) := max(0, 𝑥) Maximum OPT [145], T5 [90]

GeLU(𝑥) := 0.5𝑥
(
1 + Tanh(

√︁
2/𝜋 (𝑥 + 0.044715𝑥3)

)
;

Tanh(𝑥) = (exp(𝑥) + exp(−𝑥)) /(exp(𝑥) − exp(−𝑥))
Division, Exponential GPT [14, 84, 87, 88], BLOOM [57], Falcon [83],

PanGu-𝛼 [144], Jurassic-1 [64], Gopher [89]

GeGLU(𝑥) := GeLU(𝑥𝑊 + 𝑏) ⊕ (𝑥𝑉 + 𝑐) Division, Exponential LaMDA [110], GLM-130B [143]

SwiGLU(𝑥) := SiLU(𝑥𝑊 + 𝑏) ⊕ (𝑥𝑉 + 𝑐);
SiLU(𝑥) = 𝑥 · sigmoid(𝑥) = 𝑥 · 1

1+exp(−𝑥)
Division, Exponential PaLM [17], LLaMA [113, 114], Qwen [7],

DeepSeek [11], InternLM [15], Yi [135]

Normalization
Function

LayerNorm(𝑥𝑖) := 𝑥𝑖−𝜇
𝜎

;

𝜇 = 1
𝐶

∑𝐶
𝑖=1 𝑥𝑖 , 𝜎 =

√︃
1
𝐶

∑𝐶
𝑖=1 (𝑥𝑖 − 𝜇)2 + 𝜖

Inverted Square Root GPT [14, 84, 87, 88], BLOOM [57], BERT [20],
OPT [145], PanGu-𝛼 [144], Jurassic-1 [64]

RMSNorm(𝑥𝑖) := 𝑥𝑖
𝜎
; 𝜎 =

√︃
1
𝐶

∑𝐶
𝑖=1 (𝑥𝑖)2 + 𝜖 Inverted Square Root LLaMA [113, 114], T5 [90], Mistral [43],

Qwen [7], DeepSeek [11], Gopher [89]

Positional
Embedding

RoPE
(
𝑥2𝑖−1
𝑥2𝑖

)
=

(
𝑥2𝑖−1 cos(𝑚𝜃𝑖) − 𝑥2𝑖 sin(𝑚𝜃𝑖)
𝑥2𝑖−1 sin(𝑚𝜃𝑖) + 𝑥2𝑖 cos(𝑚𝜃𝑖)

)
;

𝜃𝑖 = 10000−2(𝑖−1)/𝑑 , 𝑖 ∈ [1, 2, . . . , 𝑑/2]
Sine, Cosine GPTNeo-20B [13], LLaMA [113, 114], PaLM [17],

GLM-130B [143], Qwen [7], DeepSeek [11]

Table 1. Overview of nonlinear operations supported by PICACHU. Element-wise nonlinear operations are shown in black,
while operations involving a reduction step followed by element-wise operations are highlighted in blue.

G
PT2-XL

11
.0
%

20.0%
64.7% 5.3%

57.7%
33.6%

7.9%

66.1% 56.6%

10.4%

37
.6
%

14.4%

10
.2
%

20.2%

B
igB

ird

LLaM
A
2-13B

O
PT-6.7B

Softmax
Normalization Activation

RoPELinear

128 256 512 1024 128 256 512 1024
0%

25%

50%

75%

100%
NonlinearLinear

7B Model
Sequence Length

13B Model

25
.0
%

21
.6
%

19
.6
%

22
.0
%

21
.9
%

19
.6
%

18
.5
%

25
.1
%

(a)

0%

20%

40%

60%

80%

100%

128 256 512 1024OPT-6.7BGPT2-XL

33.6%

7.9%

20.0%

11.0%

5.3%

64.7%

Softmax LayerNorm GeLU LinearReLU
Softmax RMSNorm SwiGLU LinearRoPE

57.7%

63.4% 59.1% 54.3% 53.7%

20.6%

10.0% 11.4% 11.6%

21.7% 17.8% 15.3%

10.5% 17.5%

(b)

Figure 1. (a) Runtime breakdown for GPT2-XL, OPT-6.7B,
BigBird and LLaMA2-13B execution with a sequence length
of 1024. (b) Runtime breakdown for LLaMA2-7B execution
across different sequence lengths.

implementation cost. This contrasts with traditional neural
networks (e.g., CNN), where matrix multiplication typically
dominates end-to-end runtime [28, 82, 92].
To illustrate the cost of nonlinear operations, we profile

the GPT2-XL [88], OPT-6.7B [145], BigBird [141], LLaMA2-
7B [114] and LLaMA2-13B models from Hugging Face, using
half-precision (FP16) on an A100 GPU across samples of
various sequence lengths. Figure 1 shows that nonlinear op-
erations, such as softmax, layernorm, GeLU, and ReLU, have
become a major bottleneck in processing latency. This issue
intensifies with longer sequence lengths of 1024, with these
operations accounting for up to 46.3% of the total inference
latency.

However, supporting the nonlinear operationswithin LLMs
poses unique challenges that previous research has yet to

fully address. Firstly, unlike traditional neural networks,
modern LLMs employ a broader and more complex range
of nonlinear operations. As highlighted in Table 1, the vari-
ety of these operations has grown considerably. Traditional
reliance on dedicated hardware units for nonlinear com-
putations is no longer practical given this diversification.
Secondly, LLMs are highly sensitive to the accuracy of these
nonlinear operations, demanding high precision in the com-
putations [10, 38, 140]. Prior works mainly focus on solely
quantizing the linear layers while keeping the nonlinear
operations in floating-point format to maintain the accu-
racy [23, 65, 96, 130, 132]. Thirdly, computing nonlinear op-
erations within LLMs in integer arithmetic is challenging.
While some works in deep neural networks (DNNs) [41, 49]
address this, our evaluation in Table 2 shows that these meth-
ods cannot be directly applied to LLMs due to large accuracy
loss. Therefore, nonlinear operations require careful consid-
eration at the hardware design stage for LLM acceleration.

Consequently, the nonlinear acceleration solutions pro-
posed in prior works [49, 75, 136] face significant limitations
when utilized for practical LLM deployment. These solutions
often lack the flexibility to accommodate the diverse range of
nonlinear operations used in modern LLMs, as well as poten-
tial future expansions in the nonlinear operation landscape.
Alternatively, some prior works may not have been validated
on actual LLM workloads, lacking comprehensive accuracy
evaluations [28]. These distinct challenges call for a holistic
approach to accelerating nonlinear operations, one that can
adapt to the evolving requirements of advanced LLMs.

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm for operations
FP version / INT version

Loop Transformation
Unroll & Vectorize

Pattern Matching
& Offloading

call @cgra_GELU
call @cgra_SOFTMAX
call @cgra_LAYERNORMTo MLIR Dialect

GELU
 LLVM IR

vector op scalar op

Ctrl Signals
of Tile 1

DFG Manipulation
Generate &
Tune & Map

fmul — ==. — fadd => GELU

e.g.

e.g.

D
R

A
M

Precision-Aware FUs

Shared
Buffer

Stream
ing &

D

ouble-buffer

CPU
cmd

resp

DMA

Compiler

Algorithm

Architecture

Decoder

Decoder

Linear &
Softmax

…

Embedding

NormalizationLLM

Normalization

Attention

FFN
Softmax,LayerNorm,
GeLU, …

PICACHU CGRA

Figure 2. An overview of PICACHU.

Despite these challenges, we observe the opportunities
to efficiently execute nonlinear operations. First, the non-
linearity in LLMs is introduced through a small set of basic
nonlinear mathematical operators. Second, nonlinear oper-
ations share common loop-based computational patterns.
Third, these operations exhibit high computational intensity.

These observations fit naturally with Coarse-Grained Re-
configurable Array (CGRA), a promising architectural solu-
tion for nonlinear operation acceleration. CGRAs are partic-
ularly well-suited for loop-based nonlinear operations due
to their time-multiplexing and spatial-multiplexing capabil-
ities [47, 62, 69]. Furthermore, CGRAs offer ultra flexible
data flow, enabling support for a wide variety of nonlinear
operations and data formats. This adaptability ensures that
the accelerator can keep up with the rapidly evolving non-
linear operation landscape in LLMs, as new operations can
be quickly implemented using basic arithmetic and control
primitives on CGRAs.

Additionally, systolic arrays, widely adopted in AI acceler-
ators like TPUs [44–46], are highly effective for linear compu-
tations such as matrix multiplications. We show in this paper
that our CGRAs can be seamlessly integrated with systolic ar-
ray architectures, enabling end-to-end LLM acceleration. In
this paper, we introduce PICACHU : Plug-In Coarse-grAined-
reConfigurable-accelerator Handling Upcoming nonlinear
operations in LLMs (Figure 2). To our knowledge, this is the
first accelerator designed for the extensive nonlinear oper-
ations in LLMs and the first to utilize CGRA as a plug-in
accelerator for LLMs. Our contributions are listed as follows:

• We propose a high-precision approach to approximate
current and emerging nonlinear functions in LLMs in
both floating-point (FP) and integer (INT) arithmetic.
Our accuracy evaluation demonstrates that our algo-
rithm has the minimal impact on LLM accuracy.

• We propose a novel heterogeneous CGRA design tai-
lored to accelerate nonlinear operations in LLMs. This
CGRA architecture offers significant flexibility, sup-
porting various data formats and precisions. Further-
more, the CGRA can be seamlessly integrated with
systolic arrays for end-to-end acceleration.

• We implement an end-to-end compilation toolchain
that translates anMLmodel at high level (e.g., Pytorch)
to LLVM IR and maps it onto the CGRA architecture.

• We evaluate the end-to-end execution of PICACHU
on various LLMs, and show that PICACHU achieves
speedups of 1.86×, 1.55×, and 3.08× over state-of-the-
art baselines including Gemmini [27], Tandem [28],
and Nvidia A100 GPU, respectively.

2 Background and Related Work
2.1 Nonlinear Operations in LLMs
In LLMs, the integration of diverse nonlinear functions across
multiple components—such as activation layers (e.g., Soft-
max, GeLU [35]), normalization layers (e.g., LayerNorm [5]),
and positional embedding mechanisms (e.g., RoPE [104])—is
vital for modeling the complex dynamics of natural language.
Nonlinear functions in activation layers introduce essen-
tial nonlinearity, enabling models to capture intricate rela-
tionships that exceed the limitations of linear mappings. In
normalization layers, functions like layer normalization not
only stabilize and rescale internal representations but also
introduce subtle nonlinear effects that enhance the learn-
ing capabilities of the model. Positional embedding layers,
responsible for encoding the relative positions of tokens
within sequences, add nonlinearity by introducing spatial
dependencies that help the model comprehend word order
and contextual relationships. A comprehensive summary
of nonlinear operations and the representative LLMs that
employ them is provided in Table 1.
Unlike in CNNs, where nonlinear functions contribute

minimally to execution cost, they contribute to significant
latency in LLMs due to the complexity and hardware ineffi-
ciency of mathematical operators like exp(.) and log(.). To
mitigate this, previous research has aimed to optimize these
operations for improved performance through two groups of
methods: algorithmic modifications and software-hardware
co-design approaches for nonlinear operations.
From an algorithmic perspective, prior research has pri-

marily concentrated on operator-level approximations using

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

MethodModel LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B

FP16 6.75 6.24 5.69 5.09
I-BERT [49] 7E+4 4E+4 6E+4 3E+4

Gemmlowp [41] 9.67 7.99 6.56 6.48

Table 2. PPL of LLaMA models over Wikitext2, a lower PPL
indicates a better result. We follow the methods in [41, 49]
to approximate nonlinear operations in integer arithmetic
while keep the linear layers in FP format.

polynomials, which are computationally efficient and well-
supported by GPUs without necessitating substantial hard-
ware changes. For example, I-BERT [49] and I-LLM [38] use
polynomials to approximate nonlinear operations specific
for their target models. These approaches sacrifice general-
ity, limiting their applicability to other functions, and may
result in inconsistent accuracy across different models.

An alternative approach, used in NN-LUT [136] and Auto-
LUT [71], involves using neural networks to approximate
nonlinear functions. While this method can generalize to
other functions, it requires extra training and lacks reliability
evidence in LLM execution.

From the algorithm-hardware co-design perspective, most
efforts focus on creating specialized hardware units with cus-
tom algorithms. Transformer accelerators [36, 61, 73, 76, 119]
incorporate dedicated units for Softmax and normalization
operations. Additionally, several accelerators specifically tar-
get Softmax [26, 40, 101, 103, 118, 120, 129, 150] or normal-
ization functions [42, 122]. However, these accelerators are
generally optimized for the operations specific to their mod-
els, making it difficult to generalize for other operations.
To address this limitation and achieve broader applica-

bility, Tandem [28] focuses on designing a general-purpose
processor for handling nonlinear operations in DNNs. How-
ever, the algorithms used in Tandem have not been evaluated
for accuracy, which limits their applicability for LLMs, as
these models are very sensitive to the precision of nonlinear
operations. In contrast, PICACHU supports future opera-
tions and has been evaluated on various LLMs, with results
showing that it can be implemented without accuracy loss.

2.2 CGRA
CGRA can be either loosely or tightly coupled with a CPU. In
this paper, we focus on the loosely coupled approach, where
the CGRA operates as an independent module, with the CPU
handling only data and instruction transmission. The CGRA
is composed of multiple tiles arranged in a grid, with each
tile containing functional units (FUs) for performing basic
operations, register files, configuration memory, and on-chip
interconnects for communication with other tiles or memory.
CGRA compiler produces the configuration signals so that,
in each cycle, the tiles read their configurations and execute

the corresponding operations. The routing between tiles and
memory is also controlled by these configuration signals.
Given an application kernel, the compiler generates its

data flow graph (DFG) and maps the DFG nodes to the CGRA
tiles for computation and data routing. The initial interval (II),
calculated by the compiler, is a crucial metric that represents
the number of cycles between the initiation of sequential
loop iterations. For loops with a large number of iterations,
the II heavily influences the overall execution latency.
In comparison to ASICs, FPGAs, and GPUs, CGRA is

among the most computationally efficient and highly cus-
tomizable architectures, offering a promising approach to ac-
celerateworkloads involving extensive computations. Thanks
to its configurability and domain-specific flexibility, CGRA
can achieve superior performance and energy efficiency in
the machine learning (ML) domain. Prior works have demon-
strated that leveraging CGRA to accelerate DNNs [3, 6, 16,
22, 58, 97, 116, 134], graph neural networks (GNNs) [131,
153], and other ML workloads [1, 81] can lead to signifi-
cant improvements in performance and cost. Additionally,
some studies have explored the flexibility of CGRA in the
ML domain by designing algorithms or frameworks for de-
sign space exploration (DSE) [78, 108, 109, 154]. Mozart [93]
demonstrates the potential of using CGRA for arbitrary spe-
cialized computations like Softmax, offering a flexible and
efficient solution. Building on this, our work specifically
targets the domain of nonlinear operations within LLMs.

2.3 Systolic Array based DNN Accelerators
DNN accelerators based on systolic array architecture have
revolutionized the efficiency of deep learning computations
by optimizing the execution of matrix operations, which
are central to neural networks. In this architecture, process-
ing elements (PEs) are organized in a grid, enabling them
to perform computations in a highly parallel and pipelined
manner. Data flows rhythmically through the array, allowing
each PE to operate on different pieces of data simultaneously,
which significantly reduces latency and enhances through-
put. Systolic array architecture is especially well-suited for
tasks like convolution and matrix multiplication, which are
frequently used in CNNs and transformer-based hardware
accelerators [30, 31, 36, 52, 59, 72, 73, 98, 146–148].

3 Motivation
We begin by analyzing the characteristics of nonlinear opera-
tions (Section 3.1) and then explain why CGRA is well-suited
for handling these operations (Section 3.2).

3.1 Characteristics of Nonlinear operations in LLMs
Nonlinear functions in LLMs consist of a limited set of
basic functions. Although there are numerous operations,
only a few basic operations are involved, as shown in Table 1.
This allows us to focus on these essential operators, since

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

ASIC

FPGA

GPU

CPU

Near
Fixed

Domain
Specific

General Flexibility

Energy efficiency

MOPS/W

GOPS/W

TOPS/W

ns—μs

ms—s

ns

ns

CGRA

Power
(mW)

Performance (MOPS)

0.1 1 10 100 1000
0

1000

2000

3000

4000
PICACHU

HyCUBE

EFSHASoftAct TranCIM

NN-LUT

UE-CGRA

VecPAC ISCAS’20

(a)
Power (mW)

Performance (MOPS)

0.1 1 10 100 1000
0

2000

4000

6000

8000

PICACHU

EFSHA[42]

SoftAct[26] TranCIM[112]

NN-LUT[133]

UE-CGRA[109]
ISCAS’20[28]

SNAFU[31]

REVEL[122]

(b)

Figure 3. (a) Comparison of CGRA and other architectures,
with reconfiguration times highlighted in red. (b) Represen-
tative works: ASIC in green, CGRA in orange, FPGA in blue.

computing them with low cost simplifies the overall nonlin-
ear operations. Additionally, due to the broad applicability
of these basic functions, we expect that supporting these
core nonlinear mathematical operators will be adequate for
addressing most current and future nonlinear operations.
Nonlinear operations share common computational
patterns. Our analysis shows that all identified nonlinear
operations can be represented as loop-based, with some ad-
ditional computations outside the main loops. Based on the
dataflow patterns, we categorize these operations into two
classes: (1) element-wise operations (EO) and (2) reduction
followed by element-wise operations (RE). As illustrated in
Table 1, most nonlinear operations are EO, which can be
implemented with a single loop with a 1D input tensor. For
higher dimensions, tensors can be flattened into a 1D shape,
avoiding nested loops, as the spatial arrangement of the ten-
sor does not affect computations. In contrast, Softmax and
all normalization operations belong to RE, requiring multi-
ple single-layer loops for execution. For Softmax, there are
three loops, the first two of which perform reduction, while
normalization operations have two loops, with the first also
being a reduction; the final loop of both Softmax and nor-
malization operations consists of element-wise operations.
Nonlinear operations exhibit high computational in-
tensity at the data flow graph level. Computational inten-
sity is a widely used metric in CGRA [9, 80, 100]. At the DFG
level, the computational intensity is calculated by the ratio
of the nodes that perform computations and the nodes that
access the memory where each node represents an operation
of the kernel. In contrast to the classic Roofline model [126],
which evaluates operations at the tensor level and classifies
nonlinear operations as memory-bound, our analysis takes a
more detailed approach by counting individual computations
and memory accesses. The intensities of all operations, ex-
cept for ReLU, exceed 5.3, with a maximum of 14.5. This high
computational intensity indicates that nonlinear operations
require minimal data movement, as each data item is read
from memory, processed through multiple computations,
and then written back.

3.2 Why CGRA?
Taking into account the challenges and characteristics out-
lined in Section 1 and Section 3.1, we conclude that to effec-
tively accelerate nonlinear operations in LLMs, a universal
accelerator with the following attributes is preferable.

3.2.1 Efficiency. As shown in Figure 1, nonlinear opera-
tions constitute a large portion of runtime consumption in
modern LLMs, with trends suggesting that this share contin-
ues to grow. Consequently, our accelerator must be designed
to address the common patterns of these nonlinear opera-
tions, enabling significant efficiency gains to lower the costs
associated with LLM inference. Figure 3b lists representative
works focused on accelerations for nonlinear operations [24,
26, 40, 115, 136] and other workloads [29, 107, 112, 125],
showing that CGRA can achieve good performance while
maintaining relatively low energy consumption. We believe
that CGRA is well-suited to achieve this because of its (1)
integration of spatial and temporal computation [47, 69, 106]
and (2) data-driven execution [48, 69, 95], making it an effi-
cient accelerator for loop-based nonlinear operations.

3.2.2 Flexibility. Flexibility is essential when handling
diverse nonlinear operations, as a lack of it would hinder
support for existing operations or future advancements. As
illustrated in Figure 3a, CGRA achieves domain-specific flex-
ibility with high energy efficiency, allowing adaptation to
a wide range of current and future operations, as each tile
can be configured to perform specific tasks. While CGRAs
provide less flexibility than FPGAs or general-purpose pro-
cessors, they suffice for nonlinear operations, which involve
limited basic mathematical operators, as discussed in Sec-
tion 4.1. CGRAs allow the integration of specialized hardware
units for each tile, leveraging the characteristics of nonlinear
operations to optimize energy use and resource allocation.

3.2.3 User-defined precision. Since different LLMs use
various nonlinear operations with varying sensitivity to their
accuracy, this allows for hardware performance improve-
ments with minimal accuracy loss by dynamically adjusting
approximation levels for these operations. To support this,
PICACHU enables adaptive approximation algorithms in Sec-
tion 4.1 to ensure model accuracy. Furthermore, it incorpo-
rates a precision-aware design, as discussed in Section 5.3.3,
enabling a trade-off between accuracy and performance.

4 Methodology
In this section, we offer a comprehensive overview of the
PICACHU design. First, Section 4.1 details how nonlinear op-
erations are transformed into multiple polynomial terms for
flexible execution. Next, the PICACHU architecture is thor-
oughly discussed in Section 4.2, with an illustration provided
in Figure 4 to support our algorithms. Finally, Section 4.3
presents the PICACHU compiler toolchain.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

Operator Calculation Method

exp(𝑥)

Step 1: Calculate 𝑡 = log2 (𝑒)𝑥 (exp(𝑥) ⇒ pow(2, 𝑡)).
Step 2: Split 𝑡 into integer 𝑖 and fraction 𝑓 .
Step 3: Calculate pow(2, 𝑖) directly.
Step 4: Obtain pow(2, 𝑓) = 1 + ln 2 · 𝑓 + ln2 2/2 · 𝑓 2 + . . .

Step 5: Multiply the results in Step 3 and Step 4.

log(𝑥)
Step 1: Extract exponent 𝑒 and mantissa𝑚.
Step 2: Obtain log2 (1 +𝑚) = 1/ln 2 · (𝑚 −𝑚2/2 + . . .)
Step 3: Sum the results in Step 3 and Step 4.

sin(𝑥) Step 1: Obtain 𝑡 with sin(𝑡) = sin(𝑥), 𝑡 ∈ [−𝜋/2, 𝜋/2]
Step 2: Obtain sin(𝑡) = 𝑡 − 𝑡3/6 + . . .

cos(𝑥) Step 1: Obtain 𝑡 with cos(𝑡) = cos(𝑥), 𝑡 ∈ [−𝜋/2, 𝜋/2]
Step 2: Obtain cos(𝑡) = 1 − 𝑡2/2 + . . .

Table 3. Calculation methods for nonlinear mathematical
operators. Suppose 𝑥 is in FP format and for integer inputs
we can convert them to FP first then apply methods above.

4.1 PICACHU Algorithm
To facilitate the implementation of the nonlinear operations
listed in Table 1, we employ Taylor expansion to decompose
nonlinear mathematical operators into a sum of polynomial
terms allowing these operations to be split into basic op-
erations. PICACHU allows the users to adjust the level of
approximation by selecting the number of polynomial terms,
offering an ideal balance between computational cost and
accuracy. Specifically, for the exponential and logarithmic
operations (i.e., exp(.), log(.)), we adapt the methods from
[40, 129] by dividing the input into two components through
our special FUs proposed in Section 4.2.1. The first compo-
nent enables us to directly compute values, while the second
component, constrained within the range [0, 1], is ideal for
applying Taylor expansion. For the sine and cosine functions
(i.e., sin(.) and cos(.)), we use a similar approach to that used
for the exponential function: the input is first transformed
to the range [−𝜋/2, 𝜋/2], then Taylor expansion is applied.

The division operation is directly implemented in FUs in
a pipelined manner. Moreover, we do not account for the
inverse square root, as it only appears outside the normaliza-
tion loop and incurs minimal cost relative to the extensive
computations within the loops. This operation can be han-
dled by utilizing the CGRA to execute the standard method
from GNU Libc [102] with negligible computational cost.

Some nonlinear operations cannot be accurately computed
using basic arithmetic operations. For example, the GeLU
activation function can be efficiently computed using the
values of the Gaussian cumulative distribution function, de-
noted as Φ(·). For these operations, we can leverage special
function support proposed in Section 4.2.1 to handle them.

LLM inference typically uses FP32 or FP16 arithmetic, but
current research is investigating quantization techniques
that utilize INT arithmetic to reduce memory and computa-
tional costs. However, managing INT addition/subtraction

phi add

add
cmp

sel

mul add

add

cmp

br

10

20

30

40

80%

85%

90%

95%

phi add

add

mul add

add

add

add

cmp

br

phi-add-add

add

addmul

add

ld

phi

ld

mul-add-add

phi add

add
phi-add-add

phi add

add
cmp

sel

mul add

add

cmp

br

phi add

add
cmp

sel

mul add

add

cmp

br

phi add

add
cmp

sel

mul add

add

cmp

br

phi+add+add
phi+add, phi, ... add+add cmp+select mul+add+add

mul+add, mul cmp+br

100% 100% 32.5% 87.5% 100%

Table 4. Common patterns observed in DFGs across all non-
linear operations in LLMs. The three rows show their DFG
patterns, corresponding LLVM IR operation chains and oc-
currence frequency across kernels, respectively.

with different scale factors can be challenging in INT arith-
metic, complicating polynomial calculations. I-BERT [49]
introduces methods for computing polynomials of quan-
tized inputs through the technique of completing the square,
which proves especially effective for calculating Taylor poly-
nomials. For example, the polynomial 𝑎 + 𝑏𝑥 + 𝑐𝑥2 can be

rewritten as 𝑐
(
𝑥 + 𝑏

2𝑐

)2
+
(
𝑎 − 𝑏2

4𝑐

)
, where 𝑥 is quantized,

and the other coefficients remain constant and can be quan-
tized dynamically. Therefore, our algorithm supports both
FP and INT calculations of nonlinear operations, motivating
our architecture design of various data formats, as detailed
in Section 4.2.1. In addition, since our approximation for
nonlinear operations can achieve superior accuracy, we gain
better performance at the expense of negligible accuracy loss
through precision-aware design proposed in Section 5.3.3.

4.2 PICACHU Architecture
As shown in Figure 4, the PICACHU architecture primarily
consists of a systolic array and a CGRA, both loosely coupled
with the CPU. The CPU handles the control commands sent
to these components. The PICACHU CGRA is pluggable,
allowing it to function as a nonlinear unit connected to the
systolic array via a Shared Buffer. It consists of 16 tiles inter-
connected through a mesh on-chip network. These tiles are
classified into three types: Branch-optimized Tile (BrT), Basic
Tile (BaT) and Compute Tile (CoT), each with distinct FUs,
creating a heterogeneous CGRA. The PICACHU CGRA is
different from conventional CGRAs because of its domain-
specialized heterogeneous FUs, precision-awareness, and
plugability via the shared memory.

4.2.1 Functional Units. The FUs in the PICACHU CGRA
can efficiently process both existing and emerging nonlinear
operations while retaining general-purpose flexibility.
Operation fusion – Observing the DFGs of nonlinear op-
erations, we identify several common patterns that occur
frequently, mainly from Taylor polynomials discussed in
Section 4.1. The prevalence of these patterns is illustrated
in Table 4. We combine each recurring pattern into a single
complex node that can run on the specialized FU in a single
cycle, which reduces the size of the DFGs and the critical

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

D
R

A
M

Weight Buffer

Shared Buffer

PICACHU
CGRA

In
pu

t B
uf

fe
r

Functional Units

R
eg

s

R
eg

s

P
re

di
ca

te

Configure
Memory

8 x 9

phi, br, add/fadd,
mul/fmul, div/fdiv,
vectorized add/mul

Accelerator
Cmd

Accelerator
Response

..

...

.. ..

...

...

.. ..

MAC MAC MAC

…

……

…

Systolic
Array System

Shared Buffer
Scalar

Vector FUs

a0
,

b0

a1
,

b1

a2
,

b2

a3
,

b3

16b add
16b add

16b add

16b add
16b add

16b add
16b add

16b add
c0

c1

c2

c3

c0

c1

concat

concatcarry

Vector AdderFour 16 bit
additions

Two 32 bit
additions

16b mul
16b mul

16b mul

16b mul
16b mul

16b mul
16b mul

16b mul
c0

c1

c2

c3

<<16

<<16

<<32

c0

Vector MultiplierFour 16
bit mul

One 64
bit mul

BaT

call @cgra_GELU
...
cgra_GELU:
 %5 = phi ...
 %6 = fmul ...
 ...

Program

a0
,

b0

a1
,

b1

a2
,

b2

a3
,

b3

a0
,

b0

a1
,

b1

a3
,

b3a2
,

b2

a0
,

b0

a0
,

b1

a1
,

b0

a1
,

b1

cmp-br,
mul-add,
lut, etc…

cmp-sel, phi-add,
add-add, etc…

BrT

CoT BaT CoT

BrTBaT

BaT BaT BaT

BrT BrT BrT

CoT CoT CoT

BaT BaT BaT

Supported Operations
in Functional Units:

CPU

MAC MAC MAC

MAC MAC MAC

Precision-Aware FUs

Figure 4. Overall architecture of PICACHU.

path (i.e., II), leading to higher overall speedup as shown in
Figure 7a. The fused operations are classified in three cat-
egories, each of which is supported by different tiles (i.e.,
BaT, BrT, and CoT). This enables better workload distribution
among more tiles and facilitates the DFG mapping, rather
than concentrating the operations on a small number of tiles.
Special function support – To enhance support for nonlin-
ear operations on the CGRA, we introduce two specialized
hardware modules for distinct functions:

• Floating-point to Fixed-point (FP2FX) Conver-
sion Module: This module extracts the integer and
fractional components from a FP value, providing sup-
port for the algorithm outlined in Section 4.1 to per-
form exponential computations efficiently.

• Look-up Table (LUT): CoTs are equipped with LUTs
to store pre-computed values of functions which are
hard to compute (e.g., Φ(·) in GeLU). Incorporating
LUTs enhances PICACHU’s versatility, enabling it to
support both current and future nonlinear operations.

Data Format – Our CGRA is designed to support both FP
and INT inputs through flexible tiles equippedwith dedicated
FP and INT units enabling dynamic reconfiguration of inter-
mediate results as needed. The current architecture supports
FP32/FP16 and INT32/INT16 for both inputs and outputs.
FP inputs are converted to FP32 for intermediate compu-
tations, while INT inputs are processed directly using the
precision-awareness techniques described in Section 4.2.2.

4.2.2 Precision-Awareness. Quantization is essential for
LLM inference, and researchers are actively exploring low-
precision quantization with reduced bitwidth to minimize
memory usage and computational costs [23, 30, 65, 130, 139,
152]. However, implementing a full set of arithmetic units
for every integer bit width can be resource-inefficient. To
mitigate this, prior study [99] shows that INT arithmetic can
support effective hardware resource sharing, allowing units

designed for higher bit widths to be multiplexed into sev-
eral units for lower bit widths. Building on this insight, each
PICACHU CGRA tile contains four lanes, each capable of
performing 16-bit integer arithmetic. Two lanes can be com-
bined for 32-bit addition by transferring carry bits between
16-bit adders. Similarly, all four lanes can be combined for
32-bit integer multiplication through additional shift and ac-
cumulation. Although a tile can perform two 32-bit additions
using its four lanes, only half are enabled when operating in
the INT32 format to ensure alignment between addition and
multiplication operations. This approach offers flexibility in
balancing vectorization factors and precision. Higher vec-
torization factor with INT16 allows greater speedup if slight
accuracy loss is acceptable. Otherwise, INT32 will be used,
albeit with reduced vectorization.

4.2.3 Shared Buffer. As nonlinear operations are mostly
memory-bound and tensor sizes are exceeding available
memory capacity, optimizing the memory system is criti-
cal. To enhance memory efficiency, we utilize streaming and
double-buffering techniques.
Streaming – Prior to CGRA execution, some data may be
unavailable, causing an overlap between data generation and
CGRA execution. In each pass, a tile of data is generated and
sent to the CGRA for processing, with the next tile following
the same process in subsequent passes.
Double-buffering – As discussed in Section 4.2.4, off-chip
memory access via DMA is time-consuming and may create
a bottleneck in our streaming execution. We implement a
double-buffering technique with two input and two output
buffers. While reading DRAM, one buffer is used for process-
ing while the other stores data being transferred via DMA.
This approach creates an overlap between execution and
data movement, mitigating the impact of DMA latency.

4.2.4 Integration with Systolic Arrays. Architectures
based on systolic arrays are widely utilized for executing

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

off-chip
DRAM

0x04...0

SPM
Crossbar

PICACHU
CGRA

E(.),Var(.),
max{x}...

...
x1,...,xD

f(x1),...,f(xD)

y1,...,yD
0x02...0

0x01...0

Acc

To
PE

To OP B
register

O
P

A
OP B From PE

To
 O

P
A

re
gi

st
er

OS
MAC

Systolic Array

0x03...0
DMA

Input
Buffer

SA

C
G

R
A

xb
ar

SA SA

D
M

A

SA SA

D
M

A

SA

D
M

A

D
M

A

Round 1 Round 2 Round 3

C
as

e
1

C
as

e
2

CGRA Input CGRA Output Statistics Other Block-1 Block-2 Block-3

f(y1),...,f(yD)

Other
variables

...

...

... ...

...

...

... ...

...

...

... ...

...

...
... ...

...

...

... ...

...

...

... ...

disable disable disable

enable enable enable

Shared Buffer

Figure 5. PICACHU CGRA integrate with the systolic array.

GEMM operations in neural networks (e.g., TPU [44–46]). A
systolic array features its own on-chip memory subsystem,
comprising input SRAM, weight SRAM, and output SRAM.
On the other hand, conventional CGRA prefers to having
its own dedicated memory space. We integrate the CGRA
with the systolic array by multiplexing the output SRAM
of the systolic array. This SRAM functions as the input, in-
termediate, and output memory (referred to as the Shared
Buffer) for the PICACHU CGRA. This allows CGRA to eas-
ily access the results of matrix multiplications as inputs of
nonlinear operations. Additionally, since some operations re-
quire inputs from off-chip DRAM instead of on-chip SRAM,
the Shared Buffer is configured to read from and write to
DRAM through DMA. The corresponding data flow during
the execution is depicted in Figure 5.

As sequence lengths grow, there may be situations where
SRAM cannot hold an entire tensor of shape 𝑁 × 𝐷 , where
𝑁 denotes the number of tokens and 𝐷 represents the em-
bedding dimension. This is where our streaming and double-
buffering techniques, discussed in Section 4.2.3, come into
play to minimize data movement and enhance data reuse. We
propose three data flow strategies for nonlinear operations
in LLMs and detail their execution in various scenarios.
Case 1 – For EOs, all operations are element-wise and single-
looped (i.e., without reduction). Therefore, they can seam-
lessly overlap with the systolic array without concerns about
tensor size. Each time the systolic array produces output,
execution in the CGRA can commence immediately, as il-
lustrated in Figure 5. The inputs for the Shared Buffer are
sourced from the systolic array, the outputs are produced
without buffering the intermediate statistics.
Case 2 – For REs and buffer cannot hold the entire tensor,
we access DRAM to retrieve inputs channel by channel. This
approach allows us to focus on processing a single vector
for each data transfer. As described in Section 5.3.5, a Shared
Buffer of 40KB is enough to hold the values within one chan-
nel for all the LLMs. Once processing is complete, the results

are written back to DRAM via DMA. As shown in Figure 5,
the inputs for the Shared Buffer are retrieved from off-chip
DRAM, while intermediate statistics, such as mean and vari-
ance, are buffered for further computation. Note that both
the inputs and outputs of normalization operations must
reside in DRAM during execution while for softmax with
three loops, as mentioned in Section 3.1, the second and third
loops are the same as the normalization operations, as the
first loop can overlap with the systolic array operations.
Case 3 – Despite the need for reduction in REs, algorithmic
optimizations for nonlinear operations, such as FlashAtten-
tion [19], can enable them to fit within the buffer. In such
cases, we can keep inputs in the Shared Buffer until statistics
are obtained. Then, we can follow the data flows described
in Case 1 to perform element-wise operations in the last loop
of REs while keeping the Statistics module active.

4.3 PICACHU Compiler Toolchain
To support the mapping of MLmodels from high-level frame-
works (e.g., PyTorch, ONNX) onto our CGRA, we have de-
veloped an end-to-end compiler framework built on top of
MLIR [56]. As shown in Figure 6, this framework takes the
models as inputs, lowering them to MLIR in Linalg/Affine
dialects. Nonlinear operations are identified through prede-
fined patterns and converted into specific tasks for offloading
to the CGRA for execution. Subsequently, these operations
are lowered to LLVM IR, where they undergo loop optimiza-
tions and DFG manipulations. Finally, the DFG is mapped
onto the CGRA, allowing us to use our RTL framework tai-
lored to the architecture proposed in Section 4.2 to evaluate
performance. In the following sections, we introduce the im-
plementation details of the proposed compiler framework.
Pattern Matching – Nonlinear operations will be split into
multiple instructions in MLIR. For example, a GeLU opera-
tion is translated into five separate instructions, as illustrated
in Figure 6. We implement a pattern matching that can locate

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

func.func @forward(%arg0...
%1 = linalg.generic...
^bb0(...):
 %18 = arith.divf...
 %19 = math.erf...
 %20 = arith.addf...
 %21 = arith.mulf...
 %22 = arith.mulf...
 linalg.yield...
 } .> tensor...
return %1

cgra.launch {
 linalg.generic...
 ^bb0(...):
 ...
 soda.terminator
} {pattern = "GELU"}

call @cgra_GELU(%arg0, %2): ...

phi-add-add

add ld

phi

ld

mul-add-add

n0

n1

n2

cycle 1

cycle 2

cycle 3
DFG Generation DFG Tuning DFG Mapping

buffer
n2 n1

buffer

buffer

II=2
repeat

DFG
Manipulation

Loop
Transformation

cgra_fp_GELU:
 %6 = fmul ...
 %7 = fadd ...
 ...
cgra_int_GELU:
 %8 = fmul ...
 %9 = fadd ...
 ... Unrolled

loops
Vectorizedl

oops

ML Models Translating to
MLIR

Pattern
Matching Offloading Lowering to

LLVM IR

Evaluation

Linalg/Affine Dialects The LLVM IR for nonlinear
operation is predefined and
will be inserted in this phase.

 Power
Area, etc

T T
TTB

uf
fe

r

addmul

add

FP version

INT version

n0

n0

orUser

Figure 6. Overall compiler toolchain of PICACHU.

such nonlinear operations and combine them into a special-
ized instruction. It supports future operations without the
need to modify the MLIR dialect (as long as the front-end
provides the lowering from PyTorch/ONNX to linalg).
Offloading – Once all nonlinear operations have been iden-
tified, we utilize the offload pass to lower them into the CGRA
function calls, which can be initiated by the accelerator com-
mand, as shown in Figure 4. For computations other than
nonlinear operations (e.g., matmul), they can also be tiled
(output-stationary with same tiling factor as the nonlinear
operations if tiling is necessary) and offloaded to the systolic
array for end-to-end execution as shown in Figure 5. At this
stage, we allow users to determine the data format of each
offloaded kernel to trade-off between accuracy and speedup.
Lowering to LLVM IR – For nonlinear operations, we have
predefined kernel codes that utilize the custom algorithms
proposed in Section 4.1 across different data formats. These
kernel codes are written in C++, parameterizable in terms of
different tensor shapes, and translated into LLVM IR. After
offloading, we insert these predefined kernels into the overall
code, based on the desired data format.
Loop Transformations – This phase consists of loop un-
rolling and vectorization. (1) Loop Unrolling: We can unroll
the kernel to increase the size of the DFGs, thereby improv-
ing the utilization of the CGRA resources and enhancing
overall kernel performance. (2) Loop Vectorization: We lever-
age the LLVMAuto-Vectorization pass [55] to vectorize loops
by replacing scalar operations with vector operations.
DFG Manipulation – This phase involves DFG generation,
tuning, and mapping. (1) DFG Generation: Each DFG node
represents one instruction in LLVM IR, with control-flow
instructions converted to data flow through partial predic-
tion [34]. (2) DFG Tuning: We fuse common patterns, as
listed in Table 4, into a single node. For non-vectorized op-
erations in our architecture (e.g., division), we split them
into multiple nodes when vectorization is enabled. (3) DFG
Mapping: Our framework employs a heuristic optimization
algorithm to map the DFG onto the CGRA’s Modulo Rout-
ing Resource Graph (MRRG) [77], minimizing the initiation

interval (II). Mapping constraints include support for hetero-
geneous operations across tiles, memory access permissions,
and the ability to perform special functions, all determined
by the PICACHU CGRA specifications. Upon completing the
mapping, we obtain the II and control signals for each tile to
guide the execution of specific operations.

5 Experimental Evaluation
5.1 Experimental Setup
To evaluate the PICACHU algorithm, we test it across various
LLMs, including OPT [145], GPT-2 [88], and LLaMA [114].
Each of these models incorporates multiple nonlinear oper-
ations as outlined in Table 3. For evaluating the hardware
performance, we comapre PICACHU against Gemmini [27]
and Tandem [28], both of which support a range of nonlinear
operations in DNNs. In addition, we also compare PICACHU
to the i7-11370H CPU and the A100 GPU.

We implement the PICACHU CGRA in RTL using synthe-
sizable Verilog generated from VecPAC [107, 108] and syn-
thesize it with Synopsys Design Compiler [54] using a 45 nm
TSMC library for area and power estimation. Additionally,
we utilize CACTI 6.5 [111] to evaluate the area and power of
the SRAM. The PICACHU compiler framework is built on top
of the MLIR [56, 74] and LLVM [55] infrastructures. For end-
to-end evaluation, we employ Timeloop [4, 37, 82, 127, 128]
to estimate latency, area, and power. In the following sections,
we first assess accuracy in Section 5.2 using the algorithm
from Section 4.1. Then, we evaluate performance and hard-
ware efficiency in Section 5.3, followed by a comparison of
end-to-end performance with other accelerators and GPUs.

5.2 Accuracy Performance
We evaluate the PICACHU algorithm, described in Sec-
tion 4.1, on GPT2-XL, OPT-6.7B, OPT-13B, LLaMA2-7B, and
LLaMA2-13B. Our focus is exclusively on the nonlinear op-
erations of LLMs, while the linear components remain in
FP16. The algorithm supports both FP and INT formats for
nonlinear operations. Perplexity (PPL), a key metric for as-
sessing language understanding and text generation quality,

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

MethodPPL (↓)Model GPT2-XL OPT-6.7B OPT-13B LLaMA2-7B LLaMA2-13B

FP16 17.39 10.86 10.13 5.69 5.09
Ours (FP16) 0.00 ↑ 0.02 0.00 ↓ 0.21 ↓ 0.21
Ours (INT16) ↓ 0.05 ↑ 0.04 ↑ 0.03 ↓ 0.18 ↓ 0.10

Table 5. Performance evaluation of PICACHU algorithm on
Wikitext2 dataset, a lower value indicates a better result.

Model Method ARC-c (↑) ARC-e (↑) HS (↑) PQ (↑) WG (↑) Avg. (↑)

GPT2-XL
FP16 28.49% 50.96% 50.79% 70.51% 58.32% 51.82%

Ours (FP16) 0.00% ↑ 0.13% ↓ 0.08% ↓ 0.11% ↑ 0.16% ↑ 0.02%
Ours (INT16) ↓ 0.08% ↑ 0.09% ↓ 0.06% ↓ 0.11% ↑ 0.16% ↑ 0.01%

OPT-6.7B
FP16 34.56% 60.06% 67.20% 76.55% 65.27% 60.83%

Ours (FP16) ↑ 0.25% 0.00% ↑ 0.21% ↑ 0.06% ↓ 0.16% ↑ 0.07%
Ours (INT16) ↑ 0.33% ↑ 0.33% 0.00% ↑ 0.11% ↓ 0.08% ↑ 0.05%

OPT-13B
FP16 35.67% 61.87% 69.87% 76.77% 64.96% 61.83%

Ours (FP16) ↓ 0.26% ↑ 0.08% ↓ 0.87% 0.00% ↓ 0.16% ↓ 0.06%
Ours (INT16) ↑ 0.42% ↓ 0.09% ↑ 0.05% ↑ 0.05% ↑ 0.08% ↑ 0.10%

LLaMA2-7B
FP16 46.25% 74.58% 75.99% 79.10% 68.90% 68.97%

Ours (FP16) ↑ 0.08% ↓ 0.13% ↑ 0.03% ↓ 0.05% ↑ 0.24% ↑ 0.03%
Ours (INT16) ↑ 0.25% ↑ 0.04% ↑ 0.02% ↓ 0.10% ↑ 0.32% ↑ 0.10%

LLaMA2-13B
FP16 49.15% 77.44% 79.38% 80.52% 72.14% 71.73%

Ours (FP16) ↓ 0.09% ↑ 0.13% 0.00% 0.00% ↑ 0.24% ↑ 0.05%
Ours (INT16) ↓ 0.17% 0.00% ↓ 0.08% ↓ 0.22% 0.00% ↓ 0.10%

Table 6. PICACHU performance on zero-shot tasks. The
upward arrow indicates better accuracy.

indicates better performance with lower values. As shown in
Table 5, the algorithm performs effectively on real-time LLMs
for both FP and INT computations, with results evaluated
on Wikitext2 [79]. We present performance of PICACHU on
multiple NLP tasks, including PIQA [12], WinoGrande [91],
HellaSwag [142], and ARC (Easy and Challenge) [18] us-
ing lm_eval==0.4.4 [25] for evaluation. The results in Ta-
ble 6 show that PICACHU achieves accuracy comparable to
the FP16 model, with average degradation remaining below
0.10%. Notably, for GPT2-XL, OPT-6.7B, and LLaMA2-7B,
PICACHU even outperforms the FP16 model.

5.3 Hardware Evaluation
In this section, we evaluate the PICACHU CGRA with LLMs
involving the nonlinear operations outlined in Table 1. First,
we evaluate the power and area of the PICACHU CGRA in
Section 5.3.1. Next, we assess the impact of FUs using a 4× 4
homogeneous scalar CGRA without support for fused op-
erations, special function units as baseline in Section 5.3.2.
Then, we analyze the performance-accuracy trade-off in the
precision-aware design in Section 5.3.3. Section 5.3.4 evalu-
ates PICACHU’s scalability (i.e., 3× 3, 4× 4, 5× 5, and 4× 8),
and lastly, we study the effect of different Shared Buffer sizes
on performance in Section 5.3.5.

5.3.1 Area and Power. We evaluate the area and power
consumption of our PICACHU CGRA integrated with a
32 × 32 systolic array and a 40KB Shared Buffer, and the
operational frequency is set to 1GHz. As shown in Table 7,
PICACHU CGRA tiles occupy 14.9% of total area and 34.2%
of total power. We quantify the overhead in the design of

32×32 Systolic array 4×4 CGRA OthersSRAM MAC

Area (mm2) 5.3 0.4 1.0 0.1
Area distribution 77.6% 6.2% 14.9% 1.3%

Power (mW) 106.9 16.1 64.2 0.7
Power distribution 56.9% 8.6% 34.2% 0.3%

Table 7. Power and area breakdown of PICACHU.

FUs, expressed as a percentage of the extra overhead rela-
tive to the cost of a basic tile. The components - FP2FX unit,
vectorized FUs, floating-point FUs and LUTs - contribute
1.7%, 59.8%, 11.6% and 0.5% to area overhead and 0.8%, 18.4%,
26.3% and 3.8% to power overhead, respectively.

5.3.2 Comparison with baseline CGRA. Figure 7a
shows the speedup achieved for each kernel (i.e., nonlin-
ear operations) using our FUs and loop unrolling techniques.
The results demonstrate that our PICACHU CGRA delivers
an average speedup of 2.95×, with a maximum of 6.4×. No-
tably, RE operations consist of multiple loops, so we measure
the individual II for each kernel. This highlights the effective-
ness of the heterogeneous FUs discussed in Section 4.2.1 for
accelerating nonlinear operations. The fusion of common
patterns, as summarized in Table 4, significantly reduces
the total number of operations per kernel, and the inclusion
of specialized functions (e.g., FP2FX) simplifies the compu-
tation of nonlinear mathematical operators. Compared to
the baseline CGRA in terms of overhead, PICACHU CGRA
achieves 3.35× energy-efficiency and 2.11× area-efficiency.

5.3.3 Trade-off between performance and accuracy.
While FP16/INT32 preserve LLM accuracy, INT16 achieves
a vectorization factor of 4, delivering an aggressive average
speedup of 2.77×, with a maximum of 3.5× with minimal
accuracy loss as shown in Fig. 7d. Note that we only list
vectorizable nonlinear operations, with accuracy measured
based on complete operations (i.e., treating each RE as a
single kernel rather than splitting it into multiple kernels).
Furthermore, speedup may deviate from theoretical 4× due
to non-vectorizable LLVM IR instructions (e.g., phi), which
limit full vectorization benefits.

5.3.4 Scalability. Next, we evaluate scalability of PI-
CACHU (Figure 7b) and observe that speedup does not con-
sistently increase with CGRA size, particularly when the ar-
chitecture is sufficiently large to handle nonlinear operations
when plugged in with a 32 × 32 systolic array. Specifically,
Figure 7b shows that the 4 × 8 CGRA offers less than 1.4× (<
2×) speedup over the 4 × 4 design, which is mainly due to
the compiler’s mapping capability [51, 63, 67, 94], which is
out of the scope in this work. Notwithstanding, we can split
the 4 × 8 CGRA into two 4 × 4 partitions accelerating two

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

N
or

m
al

iz
ed

 S
pe

ed
up

0
LayerNorm(1) RMSNorm(1) RoPESoftmax(1)SwiGLUGeGLUGeLUReLU

Baseline, UF=1 Baseline, UF=2 Baseline, UF=4 PICACHU, UF=1 PICACHU, UF=2 PICACHU, UF=4

Softmax(2) Softmax(3) LayerNorm(2) RMSNorm(2)

1
2
3
4

(a)

Activation Normalization Embedding

Different Sizes of PICACHU CGRA
3x3 4x4 5x5 4x8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Unlimited 40KB 20KB 10KB
Different Sizes of Shared BufferN

or
m

al
iz

ed
 S

pe
ed

up
0 0.0
1
2
3
4

0.2
0.4
0.6
0.8
1.0

GPT2-XL LLaMA2-7B

(b)

Activation Normalization Embedding

Different Sizes of PICACHU CGRA
3x3 4x4 5x5 4x8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Unlimited 40KB 20KB 10KB
Different Sizes of Shared BufferN

or
m

al
iz

ed
 S

pe
ed

up
0 0.0
1
2
3
4

0.2
0.4
0.6
0.8
1.0

GPT2-XL LLaMA2-7B

(c)

ReL
U

GeL
U

GeG
LU

SwiG
LU

Soft
max

La
ye

rN
orm

RMSNormN
or

m
al

iz
ed

 S
pe

ed
up

Scalar Ops Vector Ops Accuracy
Activation Normalization Embedding

Different Sizes of PICACHU CGRA
3x3 4x4 5x5 4x8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Unlimited 40KB 20KB 10KB
Different Sizes of Shared BufferN

or
m

al
iz

ed
 S

pe
ed

up

0 0.0 0
1
2
3
4

0.2
0.4
0.6
0.8
1.0

GPT2-XL LLaMA2-7B

1
2
3
4

92%
94%
96%
98%
100%

(d)

Figure 7. (a) Normalized speedup of different kernels over conventional 4 × 4 CGRA. For RE operations, the number in the
parentheses of the operation indicates the index of the current loop. UF denotes unrolling factor. (b) Normalized throughput of
different kernels running on PICACHU with various numbers of tiles over the baselines. (c) Normalized speedup of end-to-end
LLMs running on PICACHUwith various sizes of Shared Buffer over the one with unlimited size as the baselines. (d) Normalized
speedup of different kernels under a vectorization factor of 4. We don’t include non-vectorized kernels in this diagram.

instances of one nonlinear operations, facilitated by double-
buffering via the Shared Buffer, achieving a speedup of 2×
while simplifying the mapping complexity. This approach
maintains the favorable scalability seen in smaller CGRAs,
even with larger configurations (e.g., a 64×64 systolic array).

5.3.5 Size of the Shared Buffer. Figure 7c illustrates how
Shared Buffer size affects LLM execution speedup. We evalu-
ate GPT2-XL with an embedding dimension of 1600 and
LLaMA2-7B with an embedding dimension of 4096. The
20KB/40KB buffers, respectively, match their token sizes,
allowing us to apply the three cases of Section 4.2.4. The re-
sults show that the optimal Shared Buffer size is the threshold
at which a token fits into memory, as larger sizes offer no
additional benefits. At a size of 40KB, we observe improved
speedup, but larger sizes provide no further performance
gains, since data movement costs are hidden by streaming
and double-buffering techniques in Section 4.2.3. This sug-
gests that we can choose model-specific Shared Buffer sizes
for optimal balance between performance and cost.

5.4 End-to-End Performance and Energy
We compare end-to-end latency and energy consumption of
PICACHU to previous state-of-the-art accelerators for neural
network, Gemmini [27] and Tandem [28], along with a CPU
and the A100 GPU. For CPU evaluation, we use the CPU for
all nonlinear operations in the LLM, while the systolic array
handles GEMM. Gemmini is an end-to-end DNN accelera-
tor with dedicated hardware units for nonlinear operations
including ReLU, GeLU, Softmax, and LayerNorm. It offloads

LLaMA2-13B
0

1.3

1.
73
x

N
or

m
al

iz
ed

 S
pe

ed
up

N
or

m
al

iz
ed

 S
pe

ed
up Gemmini

2.3

1.0
1.4

0.8

2.0
1.
40
x

2.
45
x

2.
97
x

10
.5
3x

BERT-LARGE

6.1
2.0

21

OPT-13BGPT2-XL GPT2-XL

1

2

3

0

8

16

24

15

PICACHU Tandem PICACHU

(a)

N
or

m
al

iz
ed

 S
pe

ed
up

1.
41
x

1.
55
x

BERT-LARGE

6.1

2.0
GPT2-XL

0

3

15
8.6

Tandem PICACHU

3.1

(b)

Figure 8. (a) Normalized speedup of Gemmini and PICACHU
relative to CPU latency. (b) Normalized speedup of Tandem
and PICACHU relative to A100 GPU execution latency.

unseen ones to the on-chip RISC-V core. For a fair compari-
son, we use the same systolic array configuration and exclude
all OS-related overhead. The DMA latency is measured using
a Xilinx Alveo U280 FPGA card, where data movement oc-
curs between off-chip DRAM and on-chip memory through
DMA. As shown in Figure 8a, PICACHU outperforms CPU
and Gemmini by 1.90× and 1.86× on average, respectively.
For GPT2-XL and OPT-13B, Gemmini maintains comparable
performance with PICACHU, as the nonlinear operations
in these models can be efficiently handled by its dedicated
hardware units. However, for LLaMA2-13B, which contains
SwiGLU and RMSNorm, Gemmini must offload these oper-
ations to the on-chip RISC-V core, resulting in longer pro-
cessing latency. Conversely, PICACHU outperforms both
the CPU and Gemmini due to its wider nonlinear operator
coverage and advanced memory optimizations, while the
CPU and Gemmini incur additional data movement costs
without the benefits of streaming and double-buffering.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

LRU Valid Dirty Tag Data

572.0
2.6 2.7 2.8 2.4

3.2 3.3 3.4
2.4

3.1 3.3 3.3 2.9
3.8 4.0 4.0

73 76 78 69 87 91 93
68

88 93 93 83
104 110 110

0

2

4

6

S
pe

ed
up

 o
ve

r
A

10
0

G
P

U

E
nergy R

eduction
over A

100 G
P

U

Energy ReductionSpeedup

0

50

100

150

128
LLaMA2-7B LLaMA2-13BOPT-6.3B OPT-13B

Sequence Length

256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024

(a)

128 256 512 1024 128 256 512 1024
0%

25%

50%

75%

100%
NonlinearLinear

7B Model
Sequence Length

13B Model

25
.0
%

21
.6
%

19
.6
%

22
.0
%

21
.9
%

19
.6
%

18
.5
%

25
.1
%

(b)

Figure 9. (a) Normalized speedup and energy reduction of PICACHU relative to A100 GPU. (b) Latency breakdown of PICACHU
on LLaMA-7B models and 13B models.

Tandem is another relevant work focused on non-GEMM
acceleration in DNNs, using I-BERT and gemmlowp [41] to
approximate nonlinear operations, which results in accuracy
degradation as shown in Table 2. It reports hardware per-
formance only for BERT and GPT2. As shown in Figure 8b,
PICACHU outperforms Tandem on both LLMs with a max-
imum speedup of 1.55×. Figure 9a shows that PICACHU
outperforms the A100 with average speedups of 2.80× on
OPT and 3.36× on LLaMA. For a fair comparison, we fol-
low Tandem [28] to scale up PICACHU’s systolic array and
CGRA to match the throughput of the A100. Figure 9b pro-
vides a latency breakdown of PICACHU. PICACHU achieves
higher acceleration on LLaMA2 due to its more and more
complex nonlinear operations. The end-to-end speedup re-
sults from systolic arrays accelerating linear operations and
CGRA optimizing nonlinear ones. In LLaMA models, GEMM
achieves 2.43× speedup while nonlinear operations reach
6.74×, yielding 3.36× overall acceleration. Notably, nonlin-
ear operation latency in LLaMA2-7B/13B decreases from
42.4%/44.4% to 22.8%/20.5%, demonstrating the effectiveness
of our techniques in accelerating these operations.

6 Conclusions
This work presents PICACHU, a plug-in coarse-grained re-
configurable accelerator specifically designed to efficiently
handle nonlinear operations using custom algorithms and
dedicated compiler toolchain. PICACHU targets all nonlinear
operations within LLMs, leveraging CGRA as a plug-in ac-
celerator for LLM inference. The evaluation results indicate
that PICACHU outperforms previous state-of-the-art accel-
erators in LLM inference, presenting a promising avenue for
future research on implementing nonlinear operations in
LLMs.

References
[1] G Abarajithan, Zhenghua Ma, Zepeng Li, Shrideep Koparkar,

Ravidu Munasinghe, Francesco Restuccia, and Ryan Kastner. 2024.
CGRA4ML: A Framework to Implement Modern Neural Networks
for Scientific Edge Computing. arXiv:2408.15561 [cs.AR] https:
//arxiv.org/abs/2408.15561

[2] Dosovitskiy Alexey. 2020. An image is worth 16x16 words: Transform-
ers for image recognition at scale. arXiv preprint arXiv: 2010.11929
(2020).

[3] Kota Ando, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Tetsuya
Asai, and Masato Motomura. 2017. A multithreaded CGRA for convo-
lutional neural network processing. Circuits and Systems 8, 6 (2017),
149–170.

[4] Tanner Andrulis, Joel S. Emer, and Vivienne Sze. 2024. CiMLoop:
A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool.
In 2024 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS).

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer
Normalization. arXiv:1607.06450 [stat.ML] https://arxiv.org/abs/1607.
06450

[6] Inpyo Bae, Barend Harris, Hyemi Min, and Bernhard Egger. 2018.
Auto-tuning CNNs for coarse-grained reconfigurable array-based ac-
celerators. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 11 (2018), 2301–2310.

[7] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng,
Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609 (2023).

[8] Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan L
Yuille, Trevor Darrell, Jitendra Malik, and Alexei A Efros. 2024. Se-
quential modeling enables scalable learning for large vision models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 22861–22872.

[9] Mahesh Balasubramanian, Shail Dave, Aviral Shrivastava, and Reiley
Jeyapaul. 2018. LASER: A hardware/software approach to accelerate
complicated loops on CGRAs. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1069–1074.

[10] Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, VivekMenon,
Sun Choi, Kushal Datta, and Vikram Saletore. 2019. Efficient 8-bit
quantization of transformer neural machine language translation
model. arXiv preprint arXiv:1906.00532 (2019).

[11] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai,
Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al.
2024. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954 (2024).

[12] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. 2020.
Piqa: Reasoning about physical commonsense in natural language.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
7432–7439.

[13] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, et al. 2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745 (2022).

[14] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

https://arxiv.org/abs/2408.15561
https://arxiv.org/abs/2408.15561
https://arxiv.org/abs/2408.15561
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. arXiv:2005.14165 [cs.CL] https://arxiv.org/abs/2005.14165

[15] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen,
Xin Chen, Xun Chen, Zehui Chen, Zhi Chen, Pei Chu, et al. 2024.
Internlm2 technical report. arXiv preprint arXiv:2403.17297 (2024).

[16] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017.
Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks. IEEE Journal of Solid-State Circuits
52, 1 (2017), 127–138. doi:10.1109/JSSC.2016.2616357

[17] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten
Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won
Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen
Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif,
Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou,
Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexan-
der Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child,
Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah
Fiedel. 2022. PaLM: Scaling Language Modeling with Pathways.
arXiv:2204.02311 [cs.CL] https://arxiv.org/abs/2204.02311

[18] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you
have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457 (2018).

[19] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. 2022. FlashAttention: Fast and Memory-Efficient Exact Attention
with IO-Awareness. arXiv:2205.14135 [cs.LG] https://arxiv.org/abs/
2205.14135

[20] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint arXiv:1810.04805
(2018).

[21] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, BinWang, Linke
Ouyang, Xilin Wei, Songyang Zhang, Haodong Duan, Maosong Cao,
et al. 2024. Internlm-xcomposer2: Mastering free-form text-image
composition and comprehension in vision-language large model.
arXiv preprint arXiv:2401.16420 (2024).

[22] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eu-
genio Culurciello, and Yann LeCun. 2011. Neuflow: A runtime re-
configurable dataflow processor for vision. In CVPR 2011 workshops.
IEEE, 109–116.

[23] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh.
2022. Gptq: Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323 (2022).

[24] Yuzhe Fu, Changchun Zhou, Tianling Huang, Eryi Han, Yifan He, and
Hailong Jiao. 2024. SoftAct: A High-Precision Softmax Architecture
for Transformers Supporting Nonlinear Functions. IEEE Transactions
on Circuits and Systems for Video Technology (2024).

[25] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain
Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite, BenWang, Kevin
Wang, and Andy Zou. 2023. A framework for few-shot language
model evaluation. doi:10.5281/zenodo.10256836

[26] Yue Gao, Weiqiang Liu, and Fabrizio Lombardi. 2020. Design and
implementation of an approximate softmax layer for deep neural net-
works. In 2020 IEEE international symposium on circuits and systems

(ISCAS). IEEE, 1–5.
[27] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,

Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard
Mao, et al. 2021. Gemmini: Enabling systematic deep-learning archi-
tecture evaluation via full-stack integration. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 769–774.

[28] Soroush Ghodrati, Sean Kinzer, Hanyang Xu, RohanMahapatra, Yoon-
sung Kim, Byung Hoon Ahn, Dong Kai Wang, Lavanya Karthikeyan,
Amir Yazdanbakhsh, Jongse Park, Nam Sung Kim, and Hadi Es-
maeilzadeh. 2024. Tandem Processor: Grappling with Emerging Oper-
ators in Neural Networks. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, 1165–1182.
doi:10.1145/3620665.3640365

[29] GrahamGobieski, Ahmet Oguz Atli, KennethMai, Brandon Lucia, and
Nathan Beckmann. 2021. Snafu: an ultra-low-power, energy-minimal
cgra-generation framework and architecture. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1027–1040.

[30] Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang,
Fan Yang, Yunxin Liu, Minyi Guo, and Yuhao Zhu. 2023. Olive: Accel-
erating large language models via hardware-friendly outlier-victim
pair quantization. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1–15.

[31] Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu, Fan Yang, Yun-Bo
Liu, Minyi Guo, and Yuhao Zhu. 2022. ANT: Exploiting Adaptive
Numerical Data Type for Low-bit Deep Neural Network Quantiza-
tion. 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (2022), 1414–1433. https://api.semanticscholar.org/
CorpusID:251928917

[32] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong
Park, Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, JaeW
Lee, et al. 2020. Aˆ 3: Accelerating attention mechanisms in neural
networks with approximation. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 328–341.

[33] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi,
Sung Jun Jung, and Jae W Lee. 2021. ELSA: Hardware-software co-
design for efficient, lightweight self-attention mechanism in neural
networks. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 692–705.

[34] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. 2014.
Branch-aware loop mapping on CGRAs. In 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6.

[35] Dan Hendrycks and Kevin Gimpel. 2023. Gaussian Error Linear Units
(GELUs). arXiv:1606.08415 [cs.LG] https://arxiv.org/abs/1606.08415

[36] Seongmin Hong, Seungjae Moon, Junsoo Kim, Sungjae Lee, Minsub
Kim, Dongsoo Lee, and Joo-Young Kim. 2022. DFX: A Low-latency
Multi-FPGA Appliance for Accelerating Transformer-based Text Gen-
eration. arXiv:2209.10797 [eess.SY] https://arxiv.org/abs/2209.10797

[37] M. Horeni, P. Taheri, P. Tsai, A. Parashar, J. Emer, and S. Joshi. 2022.
Ruby: Improving Hardware Efficiency for Tensor Algebra Acceler-
ators Through Imperfect Factorization. In 2022 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).

[38] Xing Hu, Yuan Cheng, Dawei Yang, Zhihang Yuan, Jiangyong Yu,
Chen Xu, and Sifan Zhou. 2024. I-LLM: Efficient Integer-Only
Inference for Fully-Quantized Low-Bit Large Language Models.
arXiv:2405.17849 [cs.LG] https://arxiv.org/abs/2405.17849

[39] Mingqiang Huang, Ao Shen, Kai Li, Haoxiang Peng, Boyu Li, and Hao
Yu. 2024. Edgellm: A highly efficient cpu-fpga heterogeneous edge
accelerator for large language models. arXiv preprint arXiv:2407.21325
(2024).

[40] Muhammad Awais Hussain and Tsung-Han Tsai. 2021. An efficient
and fast softmax hardware architecture (EFSHA) for deep neural

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/JSSC.2016.2616357
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.1145/3620665.3640365
https://api.semanticscholar.org/CorpusID:251928917
https://api.semanticscholar.org/CorpusID:251928917
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2209.10797
https://arxiv.org/abs/2209.10797
https://arxiv.org/abs/2405.17849
https://arxiv.org/abs/2405.17849

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

networks. In 2021 IEEE 3rd International conference on artificial intel-
ligence circuits and systems (AICAS). IEEE, 1–4.

[41] Benoit Jacob and Pete Warden. 2017. gemmlowp: A small self-
contained low-precision gemm library. Retrieved June 14 (2017),
2018.

[42] Seongho Jeong, Minseok Seo, Xuan Truong Nguyen, and Hyuk-Jae
Lee. 2023. A Low-Latency and Lightweight FPGA-Based Engine
for Softmax and Layer Normalization Acceleration. In 2023 IEEE
International Conference on Consumer Electronics-Asia (ICCE-Asia).
IEEE, 1–3.

[43] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand,
Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mis-
tral 7B. arXiv preprint arXiv:2310.06825 (2023).

[44] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan,
Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian
Towles, et al. 2023. Tpu v4: An optically reconfigurable supercom-
puter for machine learning with hardware support for embeddings. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture. 1–14.

[45] Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nis-
hant Patil, James Laudon, Cliff Young, and David Patterson. 2020. A
domain-specific supercomputer for training deep neural networks.
Commun. ACM 63, 7 (2020), 67–78.

[46] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1–12.

[47] Manupa Karunaratne, Dhananjaya Wijerathne, Tulika Mitra, and
Li-Shiuan Peh. 2019. 4D-CGRA: Introducing branch dimension to
spatio-temporal application mapping on CGRAs. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
1–8.

[48] Himan Khanzadi, Yvon Savaria, and Jean Pierre David. 2017. A data
driven CGRA Overlay Architecture with embedded processors. In
2017 15th IEEE International New Circuits and Systems Conference
(NEWCAS). IEEE, 269–272.

[49] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and
Kurt Keutzer. 2021. I-BERT: Integer-only BERT Quantization. CoRR
abs/2101.01321 (2021). arXiv:2101.01321 https://arxiv.org/abs/2101.
01321

[50] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. 2022. Large language models are zero-shot
reasoners. Advances in neural information processing systems 35 (2022),
22199–22213.

[51] Xiangyu Kong, Yi Huang, Jianfeng Zhu, Xingchen Man, Yang Liu,
Chunyang Feng, Pengfei Gou, Minggui Tang, Shaojun Wei, and Leibo
Liu. 2023. Mapzero: Mapping for coarse-grained reconfigurable archi-
tectures with reinforcement learning and monte-carlo tree search. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture. 1–14.

[52] HTKung, BradleyMcDanel, and Sai Qian Zhang. 2019. Packing sparse
convolutional neural networks for efficient systolic array implemen-
tations: Column combining under joint optimization. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 821–834.

[53] Hsiang-Tsung Kung, Bradley McDanel, and Sai Qian Zhang. 2020.
Term quantization: Furthering quantization at run time. In SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–16.

[54] Pran Kurup and Taher Abbasi. 1997. Logic synthesis using Synopsys®.
Springer Science & Business Media.

[55] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis transformation. In International Symposium

on Code Generation and Optimization, 2004. CGO 2004. 75–86. doi:10.
1109/CGO.2004.1281665

[56] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler In-
frastructure for the End of Moore’s Law. arXiv:2002.11054 [cs.PL]
https://arxiv.org/abs/2002.11054

[57] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana
Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni,
François Yvon, Matthias Gallé, et al. 2023. Bloom: A 176b-parameter
open-access multilingual language model. (2023).

[58] Jungi Lee and Jongeun Lee. 2021. NP-CGRA: Extending CGRAs for
efficient processing of light-weight deep neural networks. In 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 1408–1413.

[59] Jungi Lee, Wonbeom Lee, and Jaewoong Sim. 2024. Tender: Ac-
celerating Large Language Models via Tensor Decomposition and
Runtime Requantization. 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA) (2024), 1048–1062. https:
//api.semanticscholar.org/CorpusID:270620037

[60] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis,
Wen-tau Yih, Tim Rocktäschel, et al. 2020. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural
Information Processing Systems 33 (2020), 9459–9474.

[61] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang
Chen, Mimi Xie, Lipeng Wan, Hang Liu, and Caiwen Ding. 2020.
Ftrans: energy-efficient acceleration of transformers using fpga. In
Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design. 175–180.

[62] Zhaoying Li, Dhananjaya Wijerathne, Xianzhang Chen, Anuj Patha-
nia, and Tulika Mitra. 2021. Chordmap: Automated mapping of
streaming applications onto cgra. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 41, 2 (2021), 306–319.

[63] Zhaoying Li, Dan Wu, Dhananjaya Wijerathne, and Tulika Mitra.
2022. Lisa: Graph neural network based portable mapping on spa-
tial accelerators. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 444–459.

[64] Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-
1: Technical details and evaluation. White Paper. AI21 Labs 1, 9 (2021).

[65] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen,
Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and
Song Han. 2024. AWQ: Activation-awareWeight Quantization for On-
Device LLM Compression and Acceleration. Proceedings of Machine
Learning and Systems 6 (2024), 87–100.

[66] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi,
and Song Han. 2024. Vila: On pre-training for visual language models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 26689–26699.

[67] Dajiang Liu, Yuxin Xia, Jiaxing Shang, Jiang Zhong, PengOuyang, and
Shouyi Yin. 2024. E2EMap: End-to-End Reinforcement Learning for
CGRA Compilation via Reverse Mapping. In 2024 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE,
46–60.

[68] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024.
Visual instruction tuning. Advances in neural information processing
systems 36 (2024).

[69] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie
Han, Shouyi Yin, and Shaojun Wei. 2019. A survey of coarse-grained
reconfigurable architecture and design: Taxonomy, challenges, and
applications. ACM Computing Surveys (CSUR) 52, 6 (2019), 1–39.

[70] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao
Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christo-
pher Re, et al. 2023. Deja vu: Contextual sparsity for efficient llms

https://arxiv.org/abs/2101.01321
https://arxiv.org/abs/2101.01321
https://arxiv.org/abs/2101.01321
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://api.semanticscholar.org/CorpusID:270620037
https://api.semanticscholar.org/CorpusID:270620037

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

at inference time. In International Conference on Machine Learning.
PMLR, 22137–22176.

[71] Haodong Lu, Qichang Mei, and Kun Wang. 2023. Auto-LUT: Auto
Approximation of Non-Linear Operations for Neural Networks on
FPGA. In 2023 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 1–5.

[72] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang,
and Yun Liang. 2021. Sanger: A co-design framework for enabling
sparse attention using reconfigurable architecture. InMICRO-54: 54th
Annual IEEE/ACM International Symposium onMicroarchitecture. 977–
991.

[73] Siyuan Lu, Meiqi Wang, Shuang Liang, Jun Lin, and ZhongfengWang.
2020. Hardware accelerator for multi-head attention and position-
wise feed-forward in the transformer. In 2020 IEEE 33rd International
System-on-Chip Conference (SOCC). IEEE, 84–89.

[74] Yixuan Luo, Cheng Tan, Nicolas Bohm Agostini, Ang Li, Antonino
Tumeo, Nirav Dave, and Tong Geng. 2023. ML-CGRA: an integrated
compilation framework to enable efficient machine learning accelera-
tion on CGRAs. In 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[75] Alberto Marchisio, Davide Dura, Maurizio Capra, Maurizio Mar-
tina, Guido Masera, and Muhammad Shafique. 2023. SwiftTron:
An Efficient Hardware Accelerator for Quantized Transformers. In
2023 International Joint Conference on Neural Networks (IJCNN). 1–9.
doi:10.1109/IJCNN54540.2023.10191521

[76] Alberto Marchisio, Davide Dura, Maurizio Capra, Maurizio Mar-
tina, Guido Masera, and Muhammad Shafique. 2023. SwiftTron:
An Efficient Hardware Accelerator for Quantized Transformers.
arXiv:2304.03986 [cs.LG] https://arxiv.org/abs/2304.03986

[77] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwere-
ins. 2003. Exploiting loop-level parallelism on coarse-grained re-
configurable architectures using modulo scheduling. In 2003 Design,
Automation and Test in Europe Conference and Exhibition. 296–301.
doi:10.1109/DATE.2003.1253623

[78] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Ritvik
Sharma, Clark Barrett, Mark AHorowitz, Pat Hanrahan, and Priyanka
Raina. 2023. Apex: A framework for automated processing element
design space exploration using frequent subgraph analysis. In Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3. 33–45.

[79] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
2016. Pointer sentinel mixturemodels. arXiv preprint arXiv:1609.07843
(2016).

[80] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and
Karthikeyan Sankaralingam. 2017. Stream-dataflow acceleration. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture. 416–429.

[81] Westerley C Oliveira, Michael Canesche, Lucas Reis, José Augusto M
Nacif, and Ricardo S Ferreira. 2023. Heterogeneous reconfigurable
architectures for machine learning dataflows. Concurrency and Com-
putation: Practice and Experience 35, 17 (2023), e6939.

[82] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W Keckler, and Joel Emer. 2019. Timeloop:
A systematic approach to dnn accelerator evaluation. In 2019 IEEE
international symposium on performance analysis of systems and soft-
ware (ISPASS). 304–315.

[83] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra
Cojocaru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier,
Ebtesam Almazrouei, and Julien Launay. 2023. The RefinedWeb
dataset for Falcon LLM: outperforming curated corpora with web
data, and web data only. arXiv preprint arXiv:2306.01116 (2023).

[84] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jian-
feng Gao. 2023. Instruction tuning with gpt-4. arXiv preprint
arXiv:2304.03277 (2023).

[85] Yubin Qin, Yang Wang, Dazheng Deng, Zhiren Zhao, Xiaolong Yang,
Leibo Liu, Shaojun Wei, Yang Hu, and Shouyi Yin. 2023. Fact: Ffn-
attention co-optimized transformer architecture with eager correla-
tion prediction. In Proceedings of the 50th Annual International Sym-
posium on Computer Architecture. 1–14.

[86] Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei Ding, and
Yuan Xie. 2022. Dota: detect and omit weak attentions for scalable
transformer acceleration. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 14–26.

[87] A Radford. 2018. Improving language understanding by generative
pre-training. (2018).

[88] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language models are unsupervised multi-
task learners. OpenAI blog 1, 8 (2019), 9.

[89] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jor-
dan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Ro-
man Ring, Susannah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446 (2021).

[90] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research 21, 140 (2020), 1–67.

[91] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin
Choi. 2021. Winogrande: An adversarial winograd schema challenge
at scale. Commun. ACM 64, 9 (2021), 99–106.

[92] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina,
and Tushar Krishna. 2018. Scale-sim: Systolic cnn accelerator simula-
tor. arXiv preprint arXiv:1811.02883 (2018).

[93] Karthikeyan Sankaralingam, Tony Nowatzki, Vinay Gangadhar,
Preyas Shah, Michael Davies, William Galliher, Ziliang Guo, Jitu
Khare, Deepak Vijay, Poly Palamuttam, et al. 2022. The Mozart reuse
exposed dataflow processor for AI and beyond: Industrial product. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture. 978–992.

[94] Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann,
and Brandon Lucia. 2023. Pipestitch: An energy-minimal dataflow ar-
chitecture with lightweight threads. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. 1409–1422.

[95] Jiang Sha, Wenbo Song, Yu Gong, and Yingying Zhao. 2020. Acceler-
ating nested conditionals on CGRA with tag-based full predication
method. IEEE Access 8 (2020), 109401–109410.

[96] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao,
Zhiqian Li, Kaipeng Zhang, Peng Gao, Yu Qiao, and Ping Luo. 2023.
Omniquant: Omnidirectionally calibrated quantization for large lan-
guage models. arXiv preprint arXiv:2308.13137 (2023).

[97] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, et al. 2019. Simba: Scaling deep-
learning inference with multi-chip-module-based architecture. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 14–27.

[98] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Joon Kyung Kim, Vikas Chandra, and Hadi Esmaeilzadeh. 2017.
Bit Fusion: Bit-Level Dynamically Composable Architecture for Ac-
celerating Deep Neural Network. 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA) (2017), 764–775.
https://api.semanticscholar.org/CorpusID:21681898

[99] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Joon Kyung Kim, Vikas Chandra, and Hadi Esmaeilzadeh. 2018.

https://doi.org/10.1109/IJCNN54540.2023.10191521
https://arxiv.org/abs/2304.03986
https://arxiv.org/abs/2304.03986
https://doi.org/10.1109/DATE.2003.1253623
https://api.semanticscholar.org/CorpusID:21681898

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiajun Qin, Tianhua Xia, Cheng Tan, Jeff Zhang, & Sai Qian Zhang

Bit fusion: Bit-level dynamically composable architecture for acceler-
ating deep neural network. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 764–775.

[100] Ivan Saraiva Silva and Francisco Carlos Silva Junior. 2023. X4-RARE:
Revisiting the X4CP32 Coarse-Grained Reconfigurable Architecture
Model. In 2023 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 1–6.

[101] Fanny Spagnolo, Stefania Perri, and Pasquale Corsonello. 2021. Ag-
gressive approximation of the softmax function for power-efficient
hardware implementations. IEEE Transactions on Circuits and Systems
II: Express Briefs 69, 3 (2021), 1652–1656.

[102] Richard Stallman et al. 1998. The GNU project. http://www.gnu.org/
software/libc/.

[103] Jacob R Stevens, Rangharajan Venkatesan, Steve Dai, Brucek Khailany,
and Anand Raghunathan. 2021. Softermax: Hardware/software co-
design of an efficient softmax for transformers. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 469–474.

[104] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and
Yunfeng Liu. 2024. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing 568 (2024), 127063.

[105] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu
Yang, Marco Donato, Victor Sanh, Paul Whatmough, Alexander M
Rush, David Brooks, et al. 2021. Edgebert: Sentence-level energy op-
timizations for latency-aware multi-task nlp inference. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture.
830–844.

[106] Cheng Tan, Miaomiao Jiang, Deepak Patil, Yanghui Ou, Zhaoying
Li, Lei Ju, Tulika Mitra, Hyunchul Park, Antonino Tumeo, and Jeff
Zhang. 2024. ICED: An Integrated CGRA Framework Enabling DVFS-
Aware Acceleration. In 2024 57th IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1338–1352.

[107] Cheng Tan, Deepak Patil, Antonino Tumeo, GabrielWeisz, Steve Rein-
hardt, and Jeff Zhang. 2023. VecPAC: A Vectorizable and Precision-
Aware CGRA. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). 1–9. doi:10.1109/ICCAD57390.2023.10323910

[108] Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino
Tumeo. 2020. OpenCGRA: An open-source unified framework for
modeling, testing, and evaluating CGRAs. In 2020 IEEE 38th Interna-
tional Conference on Computer Design (ICCD). IEEE, 381–388.

[109] Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino
Tumeo. 2021. Aurora: Automated refinement of coarse-grained re-
configurable accelerators. In 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 1388–1393.

[110] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer,
Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie
Baker, Yu Du, et al. 2022. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239 (2022).

[111] Shyamkumar Thoziyoor, N Muralimanohar, J Ahn, and N Jouppi.
2009. Cacti 6.5. hpl.hp.com.

[112] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christo-
pher Batten. 2021. Ultra-elastic cgras for irregular loop specialization.
In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 412–425.

[113] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and
Efficient Foundation Language Models. arXiv:2302.13971 [cs.CL]
https://arxiv.org/abs/2302.13971

[114] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan

Inan,Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open
Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
https://arxiv.org/abs/2307.09288

[115] Fengbin Tu, Zihan Wu, Yiqi Wang, Ling Liang, Liu Liu, Yufei Ding,
Leibo Liu, Shaojun Wei, Yuan Xie, and Shouyi Yin. 2022. TranCIM:
Full-digital bitline-transpose CIM-based sparse transformer acceler-
ator with pipeline/parallel reconfigurable modes. IEEE Journal of
Solid-State Circuits 58, 6 (2022), 1798–1809.

[116] Fengbin Tu, Shouyi Yin, Peng Ouyang, Shibin Tang, Leibo Liu, and
Shaojun Wei. 2017. Deep convolutional neural network architecture
with reconfigurable computation patterns. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25, 8 (2017), 2220–2233.

[117] A Vaswani. 2017. Attention is all you need. Advances in Neural
Information Processing Systems (2017).

[118] Ihor Vasyltsov and Wooseok Chang. 2021. Efficient softmax approxi-
mation for deep neural networks with attention mechanism. arXiv
preprint arXiv:2111.10770 (2021).

[119] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient
sparse attention architecture with cascade token and head pruning.
In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 97–110.

[120] Meiqi Wang, Siyuan Lu, Danyang Zhu, Jun Lin, and ZhongfengWang.
2018. A high-speed and low-complexity architecture for softmax
function in deep learning. In 2018 IEEE asia pacific conference on
circuits and systems (APCCAS). IEEE, 223–226.

[121] Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu,
Gang Zeng, Ping Luo, Tong Lu, Jie Zhou, Yu Qiao, et al. 2024. Vi-
sionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Sys-
tems 36 (2024).

[122] Wenxun Wang, Shuchang Zhou, Wenyu Sun, Peiqin Sun, and Yong-
pan Liu. 2023. SOLE: Hardware-Software Co-design of Softmax and
LayerNorm for Efficient Transformer Inference. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
1–9.

[123] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sha-
ran Narang, Aakanksha Chowdhery, and Denny Zhou. 2022. Self-
consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171 (2022).

[124] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei
Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought
prompting elicits reasoning in large language models. Advances in
neural information processing systems 35 (2022), 24824–24837.

[125] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony
Nowatzki. 2020. A hybrid systolic-dataflow architecture for inductive
matrix algorithms. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 703–716.

[126] Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: an insightful visual performance model for multicore archi-
tectures. Commun. ACM 52, 4 (apr 2009), 65–76. doi:10.1145/1498765.
1498785

[127] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. 2019. Accelergy:
An architecture-level energy estimation methodology for accelerator
designs. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD).

http://www.gnu.org/software/libc/
http://www.gnu.org/software/libc/
https://doi.org/10.1109/ICCAD57390.2023.10323910
hpl.hp.com
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785

PICACHU: Plug-In CGRA Handling Upcoming Nonlinear Operations in LLMs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[128] Yannan N. Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and
Joel S. Emer. 2022. Sparseloop: An Analytical Approach To Sparse
Tensor Accelerator Modeling . In ACM/IEEE International Symposium
on Microarchitecture (MICRO).

[129] Tianhua Xia and Sai Qian Zhang. 2024. Hyft: A Reconfigurable
Softmax Accelerator with Hybrid Numeric Format for both Training
and Inference. arXiv:2311.13290 [cs.AR] https://arxiv.org/abs/2311.
13290

[130] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth,
and Song Han. 2023. Smoothquant: Accurate and efficient post-
training quantization for large language models. In International
Conference on Machine Learning. PMLR, 38087–38099.

[131] Jiaqi Yang, Hao Zheng, and Ahmed Louri. 2024. Aurora: A Versatile
and Flexible Accelerator for Graph Neural Networks. In 2024 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 890–902.

[132] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu,
Conglong Li, and Yuxiong He. 2022. Zeroquant: Efficient and afford-
able post-training quantization for large-scale transformers. Advances
in Neural Information Processing Systems 35 (2022), 27168–27183.

[133] Wenhua Ye, Xu Zhou, Joey Zhou, Cen Chen, and Kenli Li. 2023.
Accelerating attention mechanism on fpgas based on efficient recon-
figurable systolic array. ACM Transactions on Embedded Computing
Systems 22, 6 (2023), 1–22.

[134] Shouyi Yin, Peng Ouyang, Shibin Tang, Fengbin Tu, Xiudong Li, Leibo
Liu, and Shaojun Wei. 2017. A 1.06-to-5.09 TOPS/W reconfigurable
hybrid-neural-network processor for deep learning applications. In
2017 Symposium on VLSI Circuits. IEEE, C26–C27.

[135] Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guan-
wei Zhang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang,
et al. 2024. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652 (2024).

[136] Joonsang Yu, Junki Park, Seongmin Park, Minsoo Kim, Sihwa Lee,
Dong Hyun Lee, and Jungwook Choi. 2021. NN-LUT: Neural Ap-
proximation of Non-Linear Operations for Efficient Transformer
Inference. CoRR abs/2112.02191 (2021). arXiv:2112.02191 https:
//arxiv.org/abs/2112.02191

[137] Lijun Yu, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolfgang
Macherey, Yanping Huang, David Ross, Irfan Essa, Yonatan Bisk,
Ming-Hsuan Yang, et al. 2024. Spae: Semantic pyramid autoencoder
for multimodal generation with frozen llms. Advances in Neural
Information Processing Systems 36 (2024).

[138] Zhihang Yuan, Lin Niu, Jia-Wen Liu, Wenyu Liu, Xinggang Wang,
Yuzhang Shang, Guangyu Sun, Qiang Wu, Jiaxiang Wu, and Bingzhe
Wu. 2023. RPTQ: Reorder-based Post-training Quantization for
Large Language Models. ArXiv abs/2304.01089 (2023). https:
//api.semanticscholar.org/CorpusID:257913374

[139] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas
Moshovos. 2020. Gobo: Quantizing attention-based nlp models
for low latency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 811–824.

[140] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop on Energy Efficient
Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-
NIPS). IEEE, 36–39.

[141] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh
Ravula, Qifan Wang, Li Yang, et al. 2020. Big bird: Transformers

for longer sequences. Advances in neural information processing sys-
tems 33 (2020), 17283–17297.

[142] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830 (2019).

[143] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming
Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. 2022.
Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414 (2022).

[144] Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei Wang,
Xin Jiang, ZhenZhang Yang, Kaisheng Wang, Xiaoda Zhang, et al.
2021. Pangu-𝛼 : Large-scale autoregressive pretrained Chinese
language models with auto-parallel computation. arXiv preprint
arXiv:2104.12369 (2021).

[145] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya
Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, et al. 2022. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068 (2022).

[146] Sai Qian Zhang, Bradley McDanel, and HT Kung. 2022. Fast: Dnn
training under variable precision block floating point with stochastic
rounding. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 846–860.

[147] Sai Qian Zhang, Bradley McDanel, HT Kung, and Xin Dong. 2021.
Training for multi-resolution inference using reusable quantization
terms. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems. 845–860.

[148] Sai Qian Zhang, Thierry Tambe, Nestor Cuevas, Gu-Yeon Wei, and
David Brooks. 2024. CAMEL: Co-Designing AI Models and eDRAMs
for Efficient On-Device Learning. In 2024 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
861–875.

[149] Sai Qian Zhang, Thierry Tambe, Gu-Yeon Wei, and David Brooks.
2024. JointNF: Enhancing DNN Performance through Adaptive N:
M Pruning across both Weight and Activation. In Proceedings of the
29th ACM/IEEE International Symposium on Low Power Electronics
and Design. 1–6.

[150] Yuan Zhang, Yonggang Zhang, Lele Peng, Lianghua Quan, Shubin
Zheng, Zhonghai Lu, and Hui Chen. 2022. Base-2 softmax function:
Suitability for training and efficient hardware implementation. IEEE
Transactions on Circuits and Systems I: Regular Papers 69, 9 (2022),
3605–3618.

[151] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin
Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark
Barrett, et al. 2024. H2o: Heavy-hitter oracle for efficient generative
inference of large language models. Advances in Neural Information
Processing Systems 36 (2024).

[152] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size
Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, and Baris
Kasikci. 2024. Atom: Low-bit quantization for efficient and accurate
llm serving. Proceedings of Machine Learning and Systems 6 (2024),
196–209.

[153] Luca Zulberti, Matteo Monopoli, Pietro Nannipieri, and Luca Fanucci.
2022. Architectural implications for inference of graph neural net-
works on cgra-based accelerators. In 2022 17th Conference on Ph. D
Research in Microelectronics and Electronics (PRIME). IEEE, 373–376.

[154] Luca Zulberti, Matteo Monopoli, Pietro Nannipieri, Luca Fanucci,
and Silvia Moranti. 2023. Highly parameterised CGRA architecture
for design space exploration of machine learning applications on-
board satellites. In 2023 European Data Handling & Data Processing
Conference (EDHPC). IEEE, 1–6.

https://arxiv.org/abs/2311.13290
https://arxiv.org/abs/2311.13290
https://arxiv.org/abs/2311.13290
https://arxiv.org/abs/2112.02191
https://arxiv.org/abs/2112.02191
https://arxiv.org/abs/2112.02191
https://api.semanticscholar.org/CorpusID:257913374
https://api.semanticscholar.org/CorpusID:257913374

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Nonlinear Operations in LLMs
	2.2 CGRA
	2.3 Systolic Array based DNN Accelerators

	3 Motivation
	3.1 Characteristics of Nonlinear operations in LLMs
	3.2 Why CGRA?

	4 Methodology
	4.1 PICACHU Algorithm
	4.2 PICACHU Architecture
	4.3 PICACHU Compiler Toolchain

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Accuracy Performance
	5.3 Hardware Evaluation
	5.4 End-to-End Performance and Energy

	6 Conclusions
	References

