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Abstract
Large language models (LLMs) have revolutionized natural
language processing (NLP) domain by achieving state-of-
the-art performance across a range of benchmarks. However,
nonlinear operations in LLMs significantly contribute to in-
ference latency and present unique challenges that have not
been encountered previously. Addressing these challenges
requires accelerators that combine efficiency, flexibility, and
support for user-defined precision. Our analysis reveals that
Coarse-Grained Reconfigurable Arrays (CGRAs) provide an
effective solution, offering a balance of performance and
flexibility tailored to domain-specific workloads.

This paper introduces PICACHU, a plug-in coarse-grained
reconfigurable accelerator tailored to efficiently handle non-
linear operations by using custom algorithms and a dedicated
compiler toolchain. PICACHU is the first to target all non-
linear operations within LLMs and to consider CGRA as a
plug-in accelerator for LLM inference. Our evaluation shows
that PICACHU achieves speedups of 1.86× and 1.55× over
prior state-of-the-art accelerators in LLM inference.

CCS Concepts: • Hardware → Application specific in-
struction set processors; • Computer systems organiza-
tion → Single instruction, multiple data; • Computing
methodologies → Neural networks.

Keywords: Domain Specific Architecture (DSA), Coarse-
Grained Reconfigurable Array (CGRA), Large LanguageMod-
els (LLM)
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1 Introduction
In the past decade, the landscape of artificial intelligence (AI)
has undergone a profound transformation, with Transformer-
based Large Language Models (LLMs) redefining the ca-
pabilities of AI. These models have emerged as powerful
tools across various domains, including natural language
processing (NLP) [14, 20, 50, 60, 84, 87, 88, 117, 123, 124]
and computer vision (CV) [2, 8, 21, 66, 68, 121, 137], reshap-
ing both industry and human life. Despite their transforma-
tive potential, transformer-based models pose substantial
challenges due to their higher computational complexity
relative to traditional neural networks like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). This underscores the growing demand for hard-
ware acceleration. In response, the focus of AI accelerator
development has increasingly shifted toward optimizing per-
formance for transformer-based LLMs, which blend linear
operations, such as matrix multiplication, with nonlinear
operations like softmax and normalization, marking a signif-
icant trend in AI hardware innovation.

Although numerous hardware accelerators have been ex-
plored recently, the majority have focused primarily on
enhancing the efficiency of General Matrix Multiplication
(GEMM) operations [30, 31, 39, 59, 98, 138], often through
algorithmic approaches such as pruning [32, 70, 72, 85, 86,
119, 149, 151], quantization [23, 30, 53, 65, 130, 139, 147, 152],
and dataflow optimization [33, 36, 105, 133]. However, few
of these studies have delved deeply into the implementation
of nonlinear operations. As highlighted by early works [28,
49, 75, 136], during LLMs inferencing, nonlinear operations
account for an even greater share of the computational and
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Categories Nonlinear Operations Mathematical Operator Representative LLMs

Activation
Function

Softmax(𝑥𝑖 ) := exp(𝑥𝑖 )∑𝑘
𝑗=1 exp(𝑥 𝑗 )

=
exp(𝑥𝑖−𝑢 )∑𝑘
𝑗=1 exp(𝑥 𝑗−𝑢 )

;

𝑢 = max𝑗=1 𝑥 𝑗
Division, Exponential All

ReLU(𝑥) := max(0, 𝑥) Maximum OPT [145], T5 [90]

GeLU(𝑥) := 0.5𝑥
(
1 + Tanh(

√︁
2/𝜋 (𝑥 + 0.044715𝑥3)

)
;

Tanh(𝑥) = (exp(𝑥) + exp(−𝑥)) /(exp(𝑥) − exp(−𝑥))
Division, Exponential GPT [14, 84, 87, 88], BLOOM [57], Falcon [83],

PanGu-𝛼 [144], Jurassic-1 [64], Gopher [89]

GeGLU(𝑥) := GeLU(𝑥𝑊 + 𝑏) ⊕ (𝑥𝑉 + 𝑐) Division, Exponential LaMDA [110], GLM-130B [143]

SwiGLU(𝑥) := SiLU(𝑥𝑊 + 𝑏) ⊕ (𝑥𝑉 + 𝑐);
SiLU(𝑥) = 𝑥 · sigmoid(𝑥) = 𝑥 · 1

1+exp(−𝑥 )
Division, Exponential PaLM [17], LLaMA [113, 114], Qwen [7],

DeepSeek [11], InternLM [15], Yi [135]

Normalization
Function

LayerNorm(𝑥𝑖 ) := 𝑥𝑖−𝜇
𝜎

;

𝜇 = 1
𝐶

∑𝐶
𝑖=1 𝑥𝑖 , 𝜎 =

√︃
1
𝐶

∑𝐶
𝑖=1 (𝑥𝑖 − 𝜇)2 + 𝜖

Inverted Square Root GPT [14, 84, 87, 88], BLOOM [57], BERT [20],
OPT [145], PanGu-𝛼 [144], Jurassic-1 [64]

RMSNorm(𝑥𝑖 ) := 𝑥𝑖
𝜎
; 𝜎 =

√︃
1
𝐶

∑𝐶
𝑖=1 (𝑥𝑖 )2 + 𝜖 Inverted Square Root LLaMA [113, 114], T5 [90], Mistral [43],

Qwen [7], DeepSeek [11], Gopher [89]

Positional
Embedding

RoPE
(
𝑥2𝑖−1
𝑥2𝑖

)
=

(
𝑥2𝑖−1 cos(𝑚𝜃𝑖 ) − 𝑥2𝑖 sin(𝑚𝜃𝑖 )
𝑥2𝑖−1 sin(𝑚𝜃𝑖 ) + 𝑥2𝑖 cos(𝑚𝜃𝑖 )

)
;

𝜃𝑖 = 10000−2(𝑖−1)/𝑑 , 𝑖 ∈ [1, 2, . . . , 𝑑/2]
Sine, Cosine GPTNeo-20B [13], LLaMA [113, 114], PaLM [17],

GLM-130B [143], Qwen [7], DeepSeek [11]

Table 1. Overview of nonlinear operations supported by PICACHU. Element-wise nonlinear operations are shown in black,
while operations involving a reduction step followed by element-wise operations are highlighted in blue.
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Figure 1. (a) Runtime breakdown for GPT2-XL, OPT-6.7B,
BigBird and LLaMA2-13B execution with a sequence length
of 1024. (b) Runtime breakdown for LLaMA2-7B execution
across different sequence lengths.

implementation cost. This contrasts with traditional neural
networks (e.g., CNN), where matrix multiplication typically
dominates end-to-end runtime [28, 82, 92].
To illustrate the cost of nonlinear operations, we profile

the GPT2-XL [88], OPT-6.7B [145], BigBird [141], LLaMA2-
7B [114] and LLaMA2-13B models from Hugging Face, using
half-precision (FP16) on an A100 GPU across samples of
various sequence lengths. Figure 1 shows that nonlinear op-
erations, such as softmax, layernorm, GeLU, and ReLU, have
become a major bottleneck in processing latency. This issue
intensifies with longer sequence lengths of 1024, with these
operations accounting for up to 46.3% of the total inference
latency.

However, supporting the nonlinear operationswithin LLMs
poses unique challenges that previous research has yet to

fully address. Firstly, unlike traditional neural networks,
modern LLMs employ a broader and more complex range
of nonlinear operations. As highlighted in Table 1, the vari-
ety of these operations has grown considerably. Traditional
reliance on dedicated hardware units for nonlinear com-
putations is no longer practical given this diversification.
Secondly, LLMs are highly sensitive to the accuracy of these
nonlinear operations, demanding high precision in the com-
putations [10, 38, 140]. Prior works mainly focus on solely
quantizing the linear layers while keeping the nonlinear
operations in floating-point format to maintain the accu-
racy [23, 65, 96, 130, 132]. Thirdly, computing nonlinear op-
erations within LLMs in integer arithmetic is challenging.
While some works in deep neural networks (DNNs) [41, 49]
address this, our evaluation in Table 2 shows that these meth-
ods cannot be directly applied to LLMs due to large accuracy
loss. Therefore, nonlinear operations require careful consid-
eration at the hardware design stage for LLM acceleration.

Consequently, the nonlinear acceleration solutions pro-
posed in prior works [49, 75, 136] face significant limitations
when utilized for practical LLM deployment. These solutions
often lack the flexibility to accommodate the diverse range of
nonlinear operations used in modern LLMs, as well as poten-
tial future expansions in the nonlinear operation landscape.
Alternatively, some prior works may not have been validated
on actual LLM workloads, lacking comprehensive accuracy
evaluations [28]. These distinct challenges call for a holistic
approach to accelerating nonlinear operations, one that can
adapt to the evolving requirements of advanced LLMs.
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Figure 2. An overview of PICACHU.

Despite these challenges, we observe the opportunities
to efficiently execute nonlinear operations. First, the non-
linearity in LLMs is introduced through a small set of basic
nonlinear mathematical operators. Second, nonlinear oper-
ations share common loop-based computational patterns.
Third, these operations exhibit high computational intensity.

These observations fit naturally with Coarse-Grained Re-
configurable Array (CGRA), a promising architectural solu-
tion for nonlinear operation acceleration. CGRAs are partic-
ularly well-suited for loop-based nonlinear operations due
to their time-multiplexing and spatial-multiplexing capabil-
ities [47, 62, 69]. Furthermore, CGRAs offer ultra flexible
data flow, enabling support for a wide variety of nonlinear
operations and data formats. This adaptability ensures that
the accelerator can keep up with the rapidly evolving non-
linear operation landscape in LLMs, as new operations can
be quickly implemented using basic arithmetic and control
primitives on CGRAs.

Additionally, systolic arrays, widely adopted in AI acceler-
ators like TPUs [44–46], are highly effective for linear compu-
tations such as matrix multiplications. We show in this paper
that our CGRAs can be seamlessly integrated with systolic ar-
ray architectures, enabling end-to-end LLM acceleration. In
this paper, we introduce PICACHU : Plug-In Coarse-grAined-
reConfigurable-accelerator Handling Upcoming nonlinear
operations in LLMs (Figure 2). To our knowledge, this is the
first accelerator designed for the extensive nonlinear oper-
ations in LLMs and the first to utilize CGRA as a plug-in
accelerator for LLMs. Our contributions are listed as follows:

• We propose a high-precision approach to approximate
current and emerging nonlinear functions in LLMs in
both floating-point (FP) and integer (INT) arithmetic.
Our accuracy evaluation demonstrates that our algo-
rithm has the minimal impact on LLM accuracy.

• We propose a novel heterogeneous CGRA design tai-
lored to accelerate nonlinear operations in LLMs. This
CGRA architecture offers significant flexibility, sup-
porting various data formats and precisions. Further-
more, the CGRA can be seamlessly integrated with
systolic arrays for end-to-end acceleration.

• We implement an end-to-end compilation toolchain
that translates anMLmodel at high level (e.g., Pytorch)
to LLVM IR and maps it onto the CGRA architecture.

• We evaluate the end-to-end execution of PICACHU
on various LLMs, and show that PICACHU achieves
speedups of 1.86×, 1.55×, and 3.08× over state-of-the-
art baselines including Gemmini [27], Tandem [28],
and Nvidia A100 GPU, respectively.

2 Background and Related Work
2.1 Nonlinear Operations in LLMs
In LLMs, the integration of diverse nonlinear functions across
multiple components—such as activation layers (e.g., Soft-
max, GeLU [35]), normalization layers (e.g., LayerNorm [5]),
and positional embedding mechanisms (e.g., RoPE [104])—is
vital for modeling the complex dynamics of natural language.
Nonlinear functions in activation layers introduce essen-
tial nonlinearity, enabling models to capture intricate rela-
tionships that exceed the limitations of linear mappings. In
normalization layers, functions like layer normalization not
only stabilize and rescale internal representations but also
introduce subtle nonlinear effects that enhance the learn-
ing capabilities of the model. Positional embedding layers,
responsible for encoding the relative positions of tokens
within sequences, add nonlinearity by introducing spatial
dependencies that help the model comprehend word order
and contextual relationships. A comprehensive summary
of nonlinear operations and the representative LLMs that
employ them is provided in Table 1.
Unlike in CNNs, where nonlinear functions contribute

minimally to execution cost, they contribute to significant
latency in LLMs due to the complexity and hardware ineffi-
ciency of mathematical operators like exp(.) and log(.). To
mitigate this, previous research has aimed to optimize these
operations for improved performance through two groups of
methods: algorithmic modifications and software-hardware
co-design approaches for nonlinear operations.
From an algorithmic perspective, prior research has pri-

marily concentrated on operator-level approximations using
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MethodModel LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B

FP16 6.75 6.24 5.69 5.09
I-BERT [49] 7E+4 4E+4 6E+4 3E+4

Gemmlowp [41] 9.67 7.99 6.56 6.48

Table 2. PPL of LLaMA models over Wikitext2, a lower PPL
indicates a better result. We follow the methods in [41, 49]
to approximate nonlinear operations in integer arithmetic
while keep the linear layers in FP format.

polynomials, which are computationally efficient and well-
supported by GPUs without necessitating substantial hard-
ware changes. For example, I-BERT [49] and I-LLM [38] use
polynomials to approximate nonlinear operations specific
for their target models. These approaches sacrifice general-
ity, limiting their applicability to other functions, and may
result in inconsistent accuracy across different models.

An alternative approach, used in NN-LUT [136] and Auto-
LUT [71], involves using neural networks to approximate
nonlinear functions. While this method can generalize to
other functions, it requires extra training and lacks reliability
evidence in LLM execution.

From the algorithm-hardware co-design perspective, most
efforts focus on creating specialized hardware units with cus-
tom algorithms. Transformer accelerators [36, 61, 73, 76, 119]
incorporate dedicated units for Softmax and normalization
operations. Additionally, several accelerators specifically tar-
get Softmax [26, 40, 101, 103, 118, 120, 129, 150] or normal-
ization functions [42, 122]. However, these accelerators are
generally optimized for the operations specific to their mod-
els, making it difficult to generalize for other operations.
To address this limitation and achieve broader applica-

bility, Tandem [28] focuses on designing a general-purpose
processor for handling nonlinear operations in DNNs. How-
ever, the algorithms used in Tandem have not been evaluated
for accuracy, which limits their applicability for LLMs, as
these models are very sensitive to the precision of nonlinear
operations. In contrast, PICACHU supports future opera-
tions and has been evaluated on various LLMs, with results
showing that it can be implemented without accuracy loss.

2.2 CGRA
CGRA can be either loosely or tightly coupled with a CPU. In
this paper, we focus on the loosely coupled approach, where
the CGRA operates as an independent module, with the CPU
handling only data and instruction transmission. The CGRA
is composed of multiple tiles arranged in a grid, with each
tile containing functional units (FUs) for performing basic
operations, register files, configuration memory, and on-chip
interconnects for communication with other tiles or memory.
CGRA compiler produces the configuration signals so that,
in each cycle, the tiles read their configurations and execute

the corresponding operations. The routing between tiles and
memory is also controlled by these configuration signals.
Given an application kernel, the compiler generates its

data flow graph (DFG) and maps the DFG nodes to the CGRA
tiles for computation and data routing. The initial interval (II),
calculated by the compiler, is a crucial metric that represents
the number of cycles between the initiation of sequential
loop iterations. For loops with a large number of iterations,
the II heavily influences the overall execution latency.
In comparison to ASICs, FPGAs, and GPUs, CGRA is

among the most computationally efficient and highly cus-
tomizable architectures, offering a promising approach to ac-
celerateworkloads involving extensive computations. Thanks
to its configurability and domain-specific flexibility, CGRA
can achieve superior performance and energy efficiency in
the machine learning (ML) domain. Prior works have demon-
strated that leveraging CGRA to accelerate DNNs [3, 6, 16,
22, 58, 97, 116, 134], graph neural networks (GNNs) [131,
153], and other ML workloads [1, 81] can lead to signifi-
cant improvements in performance and cost. Additionally,
some studies have explored the flexibility of CGRA in the
ML domain by designing algorithms or frameworks for de-
sign space exploration (DSE) [78, 108, 109, 154]. Mozart [93]
demonstrates the potential of using CGRA for arbitrary spe-
cialized computations like Softmax, offering a flexible and
efficient solution. Building on this, our work specifically
targets the domain of nonlinear operations within LLMs.

2.3 Systolic Array based DNN Accelerators
DNN accelerators based on systolic array architecture have
revolutionized the efficiency of deep learning computations
by optimizing the execution of matrix operations, which
are central to neural networks. In this architecture, process-
ing elements (PEs) are organized in a grid, enabling them
to perform computations in a highly parallel and pipelined
manner. Data flows rhythmically through the array, allowing
each PE to operate on different pieces of data simultaneously,
which significantly reduces latency and enhances through-
put. Systolic array architecture is especially well-suited for
tasks like convolution and matrix multiplication, which are
frequently used in CNNs and transformer-based hardware
accelerators [30, 31, 36, 52, 59, 72, 73, 98, 146–148].

3 Motivation
We begin by analyzing the characteristics of nonlinear opera-
tions (Section 3.1) and then explain why CGRA is well-suited
for handling these operations (Section 3.2).

3.1 Characteristics of Nonlinear operations in LLMs
Nonlinear functions in LLMs consist of a limited set of
basic functions. Although there are numerous operations,
only a few basic operations are involved, as shown in Table 1.
This allows us to focus on these essential operators, since
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Figure 3. (a) Comparison of CGRA and other architectures,
with reconfiguration times highlighted in red. (b) Represen-
tative works: ASIC in green, CGRA in orange, FPGA in blue.

computing them with low cost simplifies the overall nonlin-
ear operations. Additionally, due to the broad applicability
of these basic functions, we expect that supporting these
core nonlinear mathematical operators will be adequate for
addressing most current and future nonlinear operations.
Nonlinear operations share common computational
patterns. Our analysis shows that all identified nonlinear
operations can be represented as loop-based, with some ad-
ditional computations outside the main loops. Based on the
dataflow patterns, we categorize these operations into two
classes: (1) element-wise operations (EO) and (2) reduction
followed by element-wise operations (RE). As illustrated in
Table 1, most nonlinear operations are EO, which can be
implemented with a single loop with a 1D input tensor. For
higher dimensions, tensors can be flattened into a 1D shape,
avoiding nested loops, as the spatial arrangement of the ten-
sor does not affect computations. In contrast, Softmax and
all normalization operations belong to RE, requiring multi-
ple single-layer loops for execution. For Softmax, there are
three loops, the first two of which perform reduction, while
normalization operations have two loops, with the first also
being a reduction; the final loop of both Softmax and nor-
malization operations consists of element-wise operations.
Nonlinear operations exhibit high computational in-
tensity at the data flow graph level. Computational inten-
sity is a widely used metric in CGRA [9, 80, 100]. At the DFG
level, the computational intensity is calculated by the ratio
of the nodes that perform computations and the nodes that
access the memory where each node represents an operation
of the kernel. In contrast to the classic Roofline model [126],
which evaluates operations at the tensor level and classifies
nonlinear operations as memory-bound, our analysis takes a
more detailed approach by counting individual computations
and memory accesses. The intensities of all operations, ex-
cept for ReLU, exceed 5.3, with a maximum of 14.5. This high
computational intensity indicates that nonlinear operations
require minimal data movement, as each data item is read
from memory, processed through multiple computations,
and then written back.

3.2 Why CGRA?
Taking into account the challenges and characteristics out-
lined in Section 1 and Section 3.1, we conclude that to effec-
tively accelerate nonlinear operations in LLMs, a universal
accelerator with the following attributes is preferable.

3.2.1 Efficiency. As shown in Figure 1, nonlinear opera-
tions constitute a large portion of runtime consumption in
modern LLMs, with trends suggesting that this share contin-
ues to grow. Consequently, our accelerator must be designed
to address the common patterns of these nonlinear opera-
tions, enabling significant efficiency gains to lower the costs
associated with LLM inference. Figure 3b lists representative
works focused on accelerations for nonlinear operations [24,
26, 40, 115, 136] and other workloads [29, 107, 112, 125],
showing that CGRA can achieve good performance while
maintaining relatively low energy consumption. We believe
that CGRA is well-suited to achieve this because of its (1)
integration of spatial and temporal computation [47, 69, 106]
and (2) data-driven execution [48, 69, 95], making it an effi-
cient accelerator for loop-based nonlinear operations.

3.2.2 Flexibility. Flexibility is essential when handling
diverse nonlinear operations, as a lack of it would hinder
support for existing operations or future advancements. As
illustrated in Figure 3a, CGRA achieves domain-specific flex-
ibility with high energy efficiency, allowing adaptation to
a wide range of current and future operations, as each tile
can be configured to perform specific tasks. While CGRAs
provide less flexibility than FPGAs or general-purpose pro-
cessors, they suffice for nonlinear operations, which involve
limited basic mathematical operators, as discussed in Sec-
tion 4.1. CGRAs allow the integration of specialized hardware
units for each tile, leveraging the characteristics of nonlinear
operations to optimize energy use and resource allocation.

3.2.3 User-defined precision. Since different LLMs use
various nonlinear operations with varying sensitivity to their
accuracy, this allows for hardware performance improve-
ments with minimal accuracy loss by dynamically adjusting
approximation levels for these operations. To support this,
PICACHU enables adaptive approximation algorithms in Sec-
tion 4.1 to ensure model accuracy. Furthermore, it incorpo-
rates a precision-aware design, as discussed in Section 5.3.3,
enabling a trade-off between accuracy and performance.

4 Methodology
In this section, we offer a comprehensive overview of the
PICACHU design. First, Section 4.1 details how nonlinear op-
erations are transformed into multiple polynomial terms for
flexible execution. Next, the PICACHU architecture is thor-
oughly discussed in Section 4.2, with an illustration provided
in Figure 4 to support our algorithms. Finally, Section 4.3
presents the PICACHU compiler toolchain.
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Operator Calculation Method

exp(𝑥)

Step 1: Calculate 𝑡 = log2 (𝑒)𝑥 (exp(𝑥) ⇒ pow(2, 𝑡)).
Step 2: Split 𝑡 into integer 𝑖 and fraction 𝑓 .
Step 3: Calculate pow(2, 𝑖) directly.
Step 4: Obtain pow(2, 𝑓 ) = 1 + ln 2 · 𝑓 + ln2 2/2 · 𝑓 2 + . . .

Step 5: Multiply the results in Step 3 and Step 4.

log(𝑥)
Step 1: Extract exponent 𝑒 and mantissa𝑚.
Step 2: Obtain log2 (1 +𝑚) = 1/ln 2 · (𝑚 −𝑚2/2 + . . .)
Step 3: Sum the results in Step 3 and Step 4.

sin(𝑥) Step 1: Obtain 𝑡 with sin(𝑡) = sin(𝑥), 𝑡 ∈ [−𝜋/2, 𝜋/2]
Step 2: Obtain sin(𝑡) = 𝑡 − 𝑡3/6 + . . .

cos(𝑥) Step 1: Obtain 𝑡 with cos(𝑡) = cos(𝑥), 𝑡 ∈ [−𝜋/2, 𝜋/2]
Step 2: Obtain cos(𝑡) = 1 − 𝑡2/2 + . . .

Table 3. Calculation methods for nonlinear mathematical
operators. Suppose 𝑥 is in FP format and for integer inputs
we can convert them to FP first then apply methods above.

4.1 PICACHU Algorithm
To facilitate the implementation of the nonlinear operations
listed in Table 1, we employ Taylor expansion to decompose
nonlinear mathematical operators into a sum of polynomial
terms allowing these operations to be split into basic op-
erations. PICACHU allows the users to adjust the level of
approximation by selecting the number of polynomial terms,
offering an ideal balance between computational cost and
accuracy. Specifically, for the exponential and logarithmic
operations (i.e., exp(.), log(.)), we adapt the methods from
[40, 129] by dividing the input into two components through
our special FUs proposed in Section 4.2.1. The first compo-
nent enables us to directly compute values, while the second
component, constrained within the range [0, 1], is ideal for
applying Taylor expansion. For the sine and cosine functions
(i.e., sin(.) and cos(.)), we use a similar approach to that used
for the exponential function: the input is first transformed
to the range [−𝜋/2, 𝜋/2], then Taylor expansion is applied.

The division operation is directly implemented in FUs in
a pipelined manner. Moreover, we do not account for the
inverse square root, as it only appears outside the normaliza-
tion loop and incurs minimal cost relative to the extensive
computations within the loops. This operation can be han-
dled by utilizing the CGRA to execute the standard method
from GNU Libc [102] with negligible computational cost.

Some nonlinear operations cannot be accurately computed
using basic arithmetic operations. For example, the GeLU
activation function can be efficiently computed using the
values of the Gaussian cumulative distribution function, de-
noted as Φ(·). For these operations, we can leverage special
function support proposed in Section 4.2.1 to handle them.

LLM inference typically uses FP32 or FP16 arithmetic, but
current research is investigating quantization techniques
that utilize INT arithmetic to reduce memory and computa-
tional costs. However, managing INT addition/subtraction
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Table 4. Common patterns observed in DFGs across all non-
linear operations in LLMs. The three rows show their DFG
patterns, corresponding LLVM IR operation chains and oc-
currence frequency across kernels, respectively.

with different scale factors can be challenging in INT arith-
metic, complicating polynomial calculations. I-BERT [49]
introduces methods for computing polynomials of quan-
tized inputs through the technique of completing the square,
which proves especially effective for calculating Taylor poly-
nomials. For example, the polynomial 𝑎 + 𝑏𝑥 + 𝑐𝑥2 can be

rewritten as 𝑐
(
𝑥 + 𝑏

2𝑐

)2
+
(
𝑎 − 𝑏2

4𝑐

)
, where 𝑥 is quantized,

and the other coefficients remain constant and can be quan-
tized dynamically. Therefore, our algorithm supports both
FP and INT calculations of nonlinear operations, motivating
our architecture design of various data formats, as detailed
in Section 4.2.1. In addition, since our approximation for
nonlinear operations can achieve superior accuracy, we gain
better performance at the expense of negligible accuracy loss
through precision-aware design proposed in Section 5.3.3.

4.2 PICACHU Architecture
As shown in Figure 4, the PICACHU architecture primarily
consists of a systolic array and a CGRA, both loosely coupled
with the CPU. The CPU handles the control commands sent
to these components. The PICACHU CGRA is pluggable,
allowing it to function as a nonlinear unit connected to the
systolic array via a Shared Buffer. It consists of 16 tiles inter-
connected through a mesh on-chip network. These tiles are
classified into three types: Branch-optimized Tile (BrT), Basic
Tile (BaT) and Compute Tile (CoT), each with distinct FUs,
creating a heterogeneous CGRA. The PICACHU CGRA is
different from conventional CGRAs because of its domain-
specialized heterogeneous FUs, precision-awareness, and
plugability via the shared memory.

4.2.1 Functional Units. The FUs in the PICACHU CGRA
can efficiently process both existing and emerging nonlinear
operations while retaining general-purpose flexibility.
Operation fusion – Observing the DFGs of nonlinear op-
erations, we identify several common patterns that occur
frequently, mainly from Taylor polynomials discussed in
Section 4.1. The prevalence of these patterns is illustrated
in Table 4. We combine each recurring pattern into a single
complex node that can run on the specialized FU in a single
cycle, which reduces the size of the DFGs and the critical
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Figure 4. Overall architecture of PICACHU.

path (i.e., II), leading to higher overall speedup as shown in
Figure 7a. The fused operations are classified in three cat-
egories, each of which is supported by different tiles (i.e.,
BaT, BrT, and CoT ). This enables better workload distribution
among more tiles and facilitates the DFG mapping, rather
than concentrating the operations on a small number of tiles.
Special function support – To enhance support for nonlin-
ear operations on the CGRA, we introduce two specialized
hardware modules for distinct functions:

• Floating-point to Fixed-point (FP2FX) Conver-
sion Module: This module extracts the integer and
fractional components from a FP value, providing sup-
port for the algorithm outlined in Section 4.1 to per-
form exponential computations efficiently.

• Look-up Table (LUT): CoTs are equipped with LUTs
to store pre-computed values of functions which are
hard to compute (e.g., Φ(·) in GeLU). Incorporating
LUTs enhances PICACHU’s versatility, enabling it to
support both current and future nonlinear operations.

Data Format – Our CGRA is designed to support both FP
and INT inputs through flexible tiles equippedwith dedicated
FP and INT units enabling dynamic reconfiguration of inter-
mediate results as needed. The current architecture supports
FP32/FP16 and INT32/INT16 for both inputs and outputs.
FP inputs are converted to FP32 for intermediate compu-
tations, while INT inputs are processed directly using the
precision-awareness techniques described in Section 4.2.2.

4.2.2 Precision-Awareness. Quantization is essential for
LLM inference, and researchers are actively exploring low-
precision quantization with reduced bitwidth to minimize
memory usage and computational costs [23, 30, 65, 130, 139,
152]. However, implementing a full set of arithmetic units
for every integer bit width can be resource-inefficient. To
mitigate this, prior study [99] shows that INT arithmetic can
support effective hardware resource sharing, allowing units

designed for higher bit widths to be multiplexed into sev-
eral units for lower bit widths. Building on this insight, each
PICACHU CGRA tile contains four lanes, each capable of
performing 16-bit integer arithmetic. Two lanes can be com-
bined for 32-bit addition by transferring carry bits between
16-bit adders. Similarly, all four lanes can be combined for
32-bit integer multiplication through additional shift and ac-
cumulation. Although a tile can perform two 32-bit additions
using its four lanes, only half are enabled when operating in
the INT32 format to ensure alignment between addition and
multiplication operations. This approach offers flexibility in
balancing vectorization factors and precision. Higher vec-
torization factor with INT16 allows greater speedup if slight
accuracy loss is acceptable. Otherwise, INT32 will be used,
albeit with reduced vectorization.

4.2.3 Shared Buffer. As nonlinear operations are mostly
memory-bound and tensor sizes are exceeding available
memory capacity, optimizing the memory system is criti-
cal. To enhance memory efficiency, we utilize streaming and
double-buffering techniques.
Streaming – Prior to CGRA execution, some data may be
unavailable, causing an overlap between data generation and
CGRA execution. In each pass, a tile of data is generated and
sent to the CGRA for processing, with the next tile following
the same process in subsequent passes.
Double-buffering – As discussed in Section 4.2.4, off-chip
memory access via DMA is time-consuming and may create
a bottleneck in our streaming execution. We implement a
double-buffering technique with two input and two output
buffers. While reading DRAM, one buffer is used for process-
ing while the other stores data being transferred via DMA.
This approach creates an overlap between execution and
data movement, mitigating the impact of DMA latency.

4.2.4 Integration with Systolic Arrays. Architectures
based on systolic arrays are widely utilized for executing
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Figure 5. PICACHU CGRA integrate with the systolic array.

GEMM operations in neural networks (e.g., TPU [44–46]). A
systolic array features its own on-chip memory subsystem,
comprising input SRAM, weight SRAM, and output SRAM.
On the other hand, conventional CGRA prefers to having
its own dedicated memory space. We integrate the CGRA
with the systolic array by multiplexing the output SRAM
of the systolic array. This SRAM functions as the input, in-
termediate, and output memory (referred to as the Shared
Buffer) for the PICACHU CGRA. This allows CGRA to eas-
ily access the results of matrix multiplications as inputs of
nonlinear operations. Additionally, since some operations re-
quire inputs from off-chip DRAM instead of on-chip SRAM,
the Shared Buffer is configured to read from and write to
DRAM through DMA. The corresponding data flow during
the execution is depicted in Figure 5.

As sequence lengths grow, there may be situations where
SRAM cannot hold an entire tensor of shape 𝑁 × 𝐷 , where
𝑁 denotes the number of tokens and 𝐷 represents the em-
bedding dimension. This is where our streaming and double-
buffering techniques, discussed in Section 4.2.3, come into
play to minimize data movement and enhance data reuse. We
propose three data flow strategies for nonlinear operations
in LLMs and detail their execution in various scenarios.
Case 1 – For EOs, all operations are element-wise and single-
looped (i.e., without reduction). Therefore, they can seam-
lessly overlap with the systolic array without concerns about
tensor size. Each time the systolic array produces output,
execution in the CGRA can commence immediately, as il-
lustrated in Figure 5. The inputs for the Shared Buffer are
sourced from the systolic array, the outputs are produced
without buffering the intermediate statistics.
Case 2 – For REs and buffer cannot hold the entire tensor,
we access DRAM to retrieve inputs channel by channel. This
approach allows us to focus on processing a single vector
for each data transfer. As described in Section 5.3.5, a Shared
Buffer of 40KB is enough to hold the values within one chan-
nel for all the LLMs. Once processing is complete, the results

are written back to DRAM via DMA. As shown in Figure 5,
the inputs for the Shared Buffer are retrieved from off-chip
DRAM, while intermediate statistics, such as mean and vari-
ance, are buffered for further computation. Note that both
the inputs and outputs of normalization operations must
reside in DRAM during execution while for softmax with
three loops, as mentioned in Section 3.1, the second and third
loops are the same as the normalization operations, as the
first loop can overlap with the systolic array operations.
Case 3 – Despite the need for reduction in REs, algorithmic
optimizations for nonlinear operations, such as FlashAtten-
tion [19], can enable them to fit within the buffer. In such
cases, we can keep inputs in the Shared Buffer until statistics
are obtained. Then, we can follow the data flows described
in Case 1 to perform element-wise operations in the last loop
of REs while keeping the Statistics module active.

4.3 PICACHU Compiler Toolchain
To support the mapping of MLmodels from high-level frame-
works (e.g., PyTorch, ONNX) onto our CGRA, we have de-
veloped an end-to-end compiler framework built on top of
MLIR [56]. As shown in Figure 6, this framework takes the
models as inputs, lowering them to MLIR in Linalg/Affine
dialects. Nonlinear operations are identified through prede-
fined patterns and converted into specific tasks for offloading
to the CGRA for execution. Subsequently, these operations
are lowered to LLVM IR, where they undergo loop optimiza-
tions and DFG manipulations. Finally, the DFG is mapped
onto the CGRA, allowing us to use our RTL framework tai-
lored to the architecture proposed in Section 4.2 to evaluate
performance. In the following sections, we introduce the im-
plementation details of the proposed compiler framework.
Pattern Matching – Nonlinear operations will be split into
multiple instructions in MLIR. For example, a GeLU opera-
tion is translated into five separate instructions, as illustrated
in Figure 6. We implement a pattern matching that can locate
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func.func @forward(%arg0...
%1 = linalg.generic...
^bb0(...):
   %18 = arith.divf... 
   %19 = math.erf... 
   %20 = arith.addf... 
   %21 = arith.mulf... 
   %22 = arith.mulf... 
   linalg.yield... 
 } .> tensor...
return %1

cgra.launch {
 linalg.generic...
  ^bb0(...):
  ...
  soda.terminator
} {pattern = "GELU"}

call @cgra_GELU(%arg0, %2): ...
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Figure 6. Overall compiler toolchain of PICACHU.

such nonlinear operations and combine them into a special-
ized instruction. It supports future operations without the
need to modify the MLIR dialect (as long as the front-end
provides the lowering from PyTorch/ONNX to linalg).
Offloading – Once all nonlinear operations have been iden-
tified, we utilize the offload pass to lower them into the CGRA
function calls, which can be initiated by the accelerator com-
mand, as shown in Figure 4. For computations other than
nonlinear operations (e.g., matmul), they can also be tiled
(output-stationary with same tiling factor as the nonlinear
operations if tiling is necessary) and offloaded to the systolic
array for end-to-end execution as shown in Figure 5. At this
stage, we allow users to determine the data format of each
offloaded kernel to trade-off between accuracy and speedup.
Lowering to LLVM IR – For nonlinear operations, we have
predefined kernel codes that utilize the custom algorithms
proposed in Section 4.1 across different data formats. These
kernel codes are written in C++, parameterizable in terms of
different tensor shapes, and translated into LLVM IR. After
offloading, we insert these predefined kernels into the overall
code, based on the desired data format.
Loop Transformations – This phase consists of loop un-
rolling and vectorization. (1) Loop Unrolling: We can unroll
the kernel to increase the size of the DFGs, thereby improv-
ing the utilization of the CGRA resources and enhancing
overall kernel performance. (2) Loop Vectorization: We lever-
age the LLVMAuto-Vectorization pass [55] to vectorize loops
by replacing scalar operations with vector operations.
DFG Manipulation – This phase involves DFG generation,
tuning, and mapping. (1) DFG Generation: Each DFG node
represents one instruction in LLVM IR, with control-flow
instructions converted to data flow through partial predic-
tion [34]. (2) DFG Tuning: We fuse common patterns, as
listed in Table 4, into a single node. For non-vectorized op-
erations in our architecture (e.g., division), we split them
into multiple nodes when vectorization is enabled. (3) DFG
Mapping: Our framework employs a heuristic optimization
algorithm to map the DFG onto the CGRA’s Modulo Rout-
ing Resource Graph (MRRG) [77], minimizing the initiation

interval (II). Mapping constraints include support for hetero-
geneous operations across tiles, memory access permissions,
and the ability to perform special functions, all determined
by the PICACHU CGRA specifications. Upon completing the
mapping, we obtain the II and control signals for each tile to
guide the execution of specific operations.

5 Experimental Evaluation
5.1 Experimental Setup
To evaluate the PICACHU algorithm, we test it across various
LLMs, including OPT [145], GPT-2 [88], and LLaMA [114].
Each of these models incorporates multiple nonlinear oper-
ations as outlined in Table 3. For evaluating the hardware
performance, we comapre PICACHU against Gemmini [27]
and Tandem [28], both of which support a range of nonlinear
operations in DNNs. In addition, we also compare PICACHU
to the i7-11370H CPU and the A100 GPU.

We implement the PICACHU CGRA in RTL using synthe-
sizable Verilog generated from VecPAC [107, 108] and syn-
thesize it with Synopsys Design Compiler [54] using a 45 nm
TSMC library for area and power estimation. Additionally,
we utilize CACTI 6.5 [111] to evaluate the area and power of
the SRAM. The PICACHU compiler framework is built on top
of the MLIR [56, 74] and LLVM [55] infrastructures. For end-
to-end evaluation, we employ Timeloop [4, 37, 82, 127, 128]
to estimate latency, area, and power. In the following sections,
we first assess accuracy in Section 5.2 using the algorithm
from Section 4.1. Then, we evaluate performance and hard-
ware efficiency in Section 5.3, followed by a comparison of
end-to-end performance with other accelerators and GPUs.

5.2 Accuracy Performance
We evaluate the PICACHU algorithm, described in Sec-
tion 4.1, on GPT2-XL, OPT-6.7B, OPT-13B, LLaMA2-7B, and
LLaMA2-13B. Our focus is exclusively on the nonlinear op-
erations of LLMs, while the linear components remain in
FP16. The algorithm supports both FP and INT formats for
nonlinear operations. Perplexity (PPL), a key metric for as-
sessing language understanding and text generation quality,
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MethodPPL (↓)Model GPT2-XL OPT-6.7B OPT-13B LLaMA2-7B LLaMA2-13B

FP16 17.39 10.86 10.13 5.69 5.09
Ours (FP16) 0.00 ↑ 0.02 0.00 ↓ 0.21 ↓ 0.21
Ours (INT16) ↓ 0.05 ↑ 0.04 ↑ 0.03 ↓ 0.18 ↓ 0.10

Table 5. Performance evaluation of PICACHU algorithm on
Wikitext2 dataset, a lower value indicates a better result.

Model Method ARC-c (↑) ARC-e (↑) HS (↑) PQ (↑) WG (↑) Avg. (↑)

GPT2-XL
FP16 28.49% 50.96% 50.79% 70.51% 58.32% 51.82%

Ours (FP16) 0.00% ↑ 0.13% ↓ 0.08% ↓ 0.11% ↑ 0.16% ↑ 0.02%
Ours (INT16) ↓ 0.08% ↑ 0.09% ↓ 0.06% ↓ 0.11% ↑ 0.16% ↑ 0.01%

OPT-6.7B
FP16 34.56% 60.06% 67.20% 76.55% 65.27% 60.83%

Ours (FP16) ↑ 0.25% 0.00% ↑ 0.21% ↑ 0.06% ↓ 0.16% ↑ 0.07%
Ours (INT16) ↑ 0.33% ↑ 0.33% 0.00% ↑ 0.11% ↓ 0.08% ↑ 0.05%

OPT-13B
FP16 35.67% 61.87% 69.87% 76.77% 64.96% 61.83%

Ours (FP16) ↓ 0.26% ↑ 0.08% ↓ 0.87% 0.00% ↓ 0.16% ↓ 0.06%
Ours (INT16) ↑ 0.42% ↓ 0.09% ↑ 0.05% ↑ 0.05% ↑ 0.08% ↑ 0.10%

LLaMA2-7B
FP16 46.25% 74.58% 75.99% 79.10% 68.90% 68.97%

Ours (FP16) ↑ 0.08% ↓ 0.13% ↑ 0.03% ↓ 0.05% ↑ 0.24% ↑ 0.03%
Ours (INT16) ↑ 0.25% ↑ 0.04% ↑ 0.02% ↓ 0.10% ↑ 0.32% ↑ 0.10%

LLaMA2-13B
FP16 49.15% 77.44% 79.38% 80.52% 72.14% 71.73%

Ours (FP16) ↓ 0.09% ↑ 0.13% 0.00% 0.00% ↑ 0.24% ↑ 0.05%
Ours (INT16) ↓ 0.17% 0.00% ↓ 0.08% ↓ 0.22% 0.00% ↓ 0.10%

Table 6. PICACHU performance on zero-shot tasks. The
upward arrow indicates better accuracy.

indicates better performance with lower values. As shown in
Table 5, the algorithm performs effectively on real-time LLMs
for both FP and INT computations, with results evaluated
on Wikitext2 [79]. We present performance of PICACHU on
multiple NLP tasks, including PIQA [12], WinoGrande [91],
HellaSwag [142], and ARC (Easy and Challenge) [18] us-
ing lm_eval==0.4.4 [25] for evaluation. The results in Ta-
ble 6 show that PICACHU achieves accuracy comparable to
the FP16 model, with average degradation remaining below
0.10%. Notably, for GPT2-XL, OPT-6.7B, and LLaMA2-7B,
PICACHU even outperforms the FP16 model.

5.3 Hardware Evaluation
In this section, we evaluate the PICACHU CGRA with LLMs
involving the nonlinear operations outlined in Table 1. First,
we evaluate the power and area of the PICACHU CGRA in
Section 5.3.1. Next, we assess the impact of FUs using a 4× 4
homogeneous scalar CGRA without support for fused op-
erations, special function units as baseline in Section 5.3.2.
Then, we analyze the performance-accuracy trade-off in the
precision-aware design in Section 5.3.3. Section 5.3.4 evalu-
ates PICACHU’s scalability (i.e., 3× 3, 4× 4, 5× 5, and 4× 8),
and lastly, we study the effect of different Shared Buffer sizes
on performance in Section 5.3.5.

5.3.1 Area and Power. We evaluate the area and power
consumption of our PICACHU CGRA integrated with a
32 × 32 systolic array and a 40KB Shared Buffer, and the
operational frequency is set to 1GHz. As shown in Table 7,
PICACHU CGRA tiles occupy 14.9% of total area and 34.2%
of total power. We quantify the overhead in the design of

32×32 Systolic array 4×4 CGRA OthersSRAM MAC

Area (mm2) 5.3 0.4 1.0 0.1
Area distribution 77.6% 6.2% 14.9% 1.3%

Power (mW) 106.9 16.1 64.2 0.7
Power distribution 56.9% 8.6% 34.2% 0.3%

Table 7. Power and area breakdown of PICACHU.

FUs, expressed as a percentage of the extra overhead rela-
tive to the cost of a basic tile. The components - FP2FX unit,
vectorized FUs, floating-point FUs and LUTs - contribute
1.7%, 59.8%, 11.6% and 0.5% to area overhead and 0.8%, 18.4%,
26.3% and 3.8% to power overhead, respectively.

5.3.2 Comparison with baseline CGRA. Figure 7a
shows the speedup achieved for each kernel (i.e., nonlin-
ear operations) using our FUs and loop unrolling techniques.
The results demonstrate that our PICACHU CGRA delivers
an average speedup of 2.95×, with a maximum of 6.4×. No-
tably, RE operations consist of multiple loops, so we measure
the individual II for each kernel. This highlights the effective-
ness of the heterogeneous FUs discussed in Section 4.2.1 for
accelerating nonlinear operations. The fusion of common
patterns, as summarized in Table 4, significantly reduces
the total number of operations per kernel, and the inclusion
of specialized functions (e.g., FP2FX) simplifies the compu-
tation of nonlinear mathematical operators. Compared to
the baseline CGRA in terms of overhead, PICACHU CGRA
achieves 3.35× energy-efficiency and 2.11× area-efficiency.

5.3.3 Trade-off between performance and accuracy.
While FP16/INT32 preserve LLM accuracy, INT16 achieves
a vectorization factor of 4, delivering an aggressive average
speedup of 2.77×, with a maximum of 3.5× with minimal
accuracy loss as shown in Fig. 7d. Note that we only list
vectorizable nonlinear operations, with accuracy measured
based on complete operations (i.e., treating each RE as a
single kernel rather than splitting it into multiple kernels).
Furthermore, speedup may deviate from theoretical 4× due
to non-vectorizable LLVM IR instructions (e.g., phi), which
limit full vectorization benefits.

5.3.4 Scalability. Next, we evaluate scalability of PI-
CACHU (Figure 7b) and observe that speedup does not con-
sistently increase with CGRA size, particularly when the ar-
chitecture is sufficiently large to handle nonlinear operations
when plugged in with a 32 × 32 systolic array. Specifically,
Figure 7b shows that the 4 × 8 CGRA offers less than 1.4× (<
2×) speedup over the 4 × 4 design, which is mainly due to
the compiler’s mapping capability [51, 63, 67, 94], which is
out of the scope in this work. Notwithstanding, we can split
the 4 × 8 CGRA into two 4 × 4 partitions accelerating two
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Figure 7. (a) Normalized speedup of different kernels over conventional 4 × 4 CGRA. For RE operations, the number in the
parentheses of the operation indicates the index of the current loop. UF denotes unrolling factor. (b) Normalized throughput of
different kernels running on PICACHU with various numbers of tiles over the baselines. (c) Normalized speedup of end-to-end
LLMs running on PICACHUwith various sizes of Shared Buffer over the one with unlimited size as the baselines. (d) Normalized
speedup of different kernels under a vectorization factor of 4. We don’t include non-vectorized kernels in this diagram.

instances of one nonlinear operations, facilitated by double-
buffering via the Shared Buffer, achieving a speedup of 2×
while simplifying the mapping complexity. This approach
maintains the favorable scalability seen in smaller CGRAs,
even with larger configurations (e.g., a 64×64 systolic array).

5.3.5 Size of the Shared Buffer. Figure 7c illustrates how
Shared Buffer size affects LLM execution speedup. We evalu-
ate GPT2-XL with an embedding dimension of 1600 and
LLaMA2-7B with an embedding dimension of 4096. The
20KB/40KB buffers, respectively, match their token sizes,
allowing us to apply the three cases of Section 4.2.4. The re-
sults show that the optimal Shared Buffer size is the threshold
at which a token fits into memory, as larger sizes offer no
additional benefits. At a size of 40KB, we observe improved
speedup, but larger sizes provide no further performance
gains, since data movement costs are hidden by streaming
and double-buffering techniques in Section 4.2.3. This sug-
gests that we can choose model-specific Shared Buffer sizes
for optimal balance between performance and cost.

5.4 End-to-End Performance and Energy
We compare end-to-end latency and energy consumption of
PICACHU to previous state-of-the-art accelerators for neural
network, Gemmini [27] and Tandem [28], along with a CPU
and the A100 GPU. For CPU evaluation, we use the CPU for
all nonlinear operations in the LLM, while the systolic array
handles GEMM. Gemmini is an end-to-end DNN accelera-
tor with dedicated hardware units for nonlinear operations
including ReLU, GeLU, Softmax, and LayerNorm. It offloads

LLaMA2-13B
0

1.3

1.
73
x

N
or

m
al

iz
ed

 S
pe

ed
up

N
or

m
al

iz
ed

 S
pe

ed
up Gemmini

2.3

1.0
1.4

0.8

2.0
1.
40
x

2.
45
x

2.
97
x

10
.5
3x

BERT-LARGE

6.1
2.0

21

OPT-13BGPT2-XL GPT2-XL

1

2

3

0

8

16

24

15

PICACHU Tandem PICACHU

(a)

N
or

m
al

iz
ed

 S
pe

ed
up

1.
41
x

1.
55
x

BERT-LARGE

6.1

2.0
GPT2-XL

0

3

15
8.6

Tandem PICACHU

3.1

(b)

Figure 8. (a) Normalized speedup of Gemmini and PICACHU
relative to CPU latency. (b) Normalized speedup of Tandem
and PICACHU relative to A100 GPU execution latency.

unseen ones to the on-chip RISC-V core. For a fair compari-
son, we use the same systolic array configuration and exclude
all OS-related overhead. The DMA latency is measured using
a Xilinx Alveo U280 FPGA card, where data movement oc-
curs between off-chip DRAM and on-chip memory through
DMA. As shown in Figure 8a, PICACHU outperforms CPU
and Gemmini by 1.90× and 1.86× on average, respectively.
For GPT2-XL and OPT-13B, Gemmini maintains comparable
performance with PICACHU, as the nonlinear operations
in these models can be efficiently handled by its dedicated
hardware units. However, for LLaMA2-13B, which contains
SwiGLU and RMSNorm, Gemmini must offload these oper-
ations to the on-chip RISC-V core, resulting in longer pro-
cessing latency. Conversely, PICACHU outperforms both
the CPU and Gemmini due to its wider nonlinear operator
coverage and advanced memory optimizations, while the
CPU and Gemmini incur additional data movement costs
without the benefits of streaming and double-buffering.
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Figure 9. (a) Normalized speedup and energy reduction of PICACHU relative to A100 GPU. (b) Latency breakdown of PICACHU
on LLaMA-7B models and 13B models.

Tandem is another relevant work focused on non-GEMM
acceleration in DNNs, using I-BERT and gemmlowp [41] to
approximate nonlinear operations, which results in accuracy
degradation as shown in Table 2. It reports hardware per-
formance only for BERT and GPT2. As shown in Figure 8b,
PICACHU outperforms Tandem on both LLMs with a max-
imum speedup of 1.55×. Figure 9a shows that PICACHU
outperforms the A100 with average speedups of 2.80× on
OPT and 3.36× on LLaMA. For a fair comparison, we fol-
low Tandem [28] to scale up PICACHU’s systolic array and
CGRA to match the throughput of the A100. Figure 9b pro-
vides a latency breakdown of PICACHU. PICACHU achieves
higher acceleration on LLaMA2 due to its more and more
complex nonlinear operations. The end-to-end speedup re-
sults from systolic arrays accelerating linear operations and
CGRA optimizing nonlinear ones. In LLaMA models, GEMM
achieves 2.43× speedup while nonlinear operations reach
6.74×, yielding 3.36× overall acceleration. Notably, nonlin-
ear operation latency in LLaMA2-7B/13B decreases from
42.4%/44.4% to 22.8%/20.5%, demonstrating the effectiveness
of our techniques in accelerating these operations.

6 Conclusions
This work presents PICACHU, a plug-in coarse-grained re-
configurable accelerator specifically designed to efficiently
handle nonlinear operations using custom algorithms and
dedicated compiler toolchain. PICACHU targets all nonlinear
operations within LLMs, leveraging CGRA as a plug-in ac-
celerator for LLM inference. The evaluation results indicate
that PICACHU outperforms previous state-of-the-art accel-
erators in LLM inference, presenting a promising avenue for
future research on implementing nonlinear operations in
LLMs.
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