
Murmuration: On-the-fly DNN Adaptation for SLO-Aware
Distributed Inference in Dynamic Edge Environments

Jieyu Lin
University of Toronto

Toronto, Ontario, Canada
jieyu.lin@mail.utoronto.ca

Minghao Li
University of Toronto

Toronto, Ontario, Canada
mingh.li@mail.utoronto.ca

Sai Qian Zhang
New York University

New York, New York, USA
sai.zhang@nyu.edu

Alberto Leon-Garcia
University of Toronto

Toronto, Ontario, Canada
alberto.leongarcia@utoronto.ca

ABSTRACT
The proliferation of Virtual and Augmented Reality (VR/AR) and
the Internet of Things (IoT) applications is driving the demand
for efficient Deep Neural Network (DNN) inference at the edge.
These applications often impose stringent Service Level Objectives
(SLOs), such as latency or accuracy, that must be met under the
constraints of limited resources and dynamic network conditions.
In this study, we explore a novel approach to DNN inference across
multiple edge devices, incorporating both model customization
and partitioning dynamically, to better align with these constraints
and SLOs. Unlike conventional methods that employ a single fixed
DNN network, our system, termed Murmuration, combines one-
shot Neural Architecture Search (NAS) and Reinforcement Learning
(RL) to dynamically customize and partition DNN models. This
approach adapts in real-time to the capabilities of the edge devices,
network conditions, and varying SLO requirements. The design of
Murmuration allows it to effectively navigate the large search space
defined by DNN models, network delays, and bandwidth, offering a
significant improvement in managing trade-offs between accuracy
and latency.

We implemented and evaluated Murmuration using a variety
of edge devices. The results show that our approach outperforms
state-of-the-art methods in terms of inference accuracy by up to 5%
or latency by up to 6.7×. With the flexibility of model customization,
Murmuration can meet SLO under a wider range of network delays
and bandwidths, improving SLO compliance rate by up to 52%.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms.

KEYWORDS
DNN, Distributed Inference, Model Partitioning, Reinforcement
Learning, One-shot NAS, Service Level Objective (SLO)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673154

Fixed DNN
Single Device

 Inference

Device 
1

Edge or Cloud 
Compute 
Device

Fixed DNN
Multi Device
 Inference

Device 
2

Device 
n

Customizable DNNs
Multi Device
 Inference 

(Ours)

Device 
1

Device 
2

Device 
n

…
Model Selection & 

PartitionModel Partition

(a) Single Model Single
Device Inference

Fixed DNN
Single Device

 Inference

Device 
1

Edge or Cloud 
Compute 
Device

Fixed DNN
Multi Device
 Inference

Device 
2

Device 
n

Customizable DNNs
Multi Device
 Inference 

(Ours)

Device 
1

Device 
2

Device 
n

…
Model Selection & 

PartitionModel Partition

(b) Single Model Multi Device
Inference

Fixed DNN
Single Device

 Inference

Device 
1

Edge or Cloud 
Compute 
Device

Fixed DNN
Multi Device
 Inference

Device 
2

Device 
n

Customizable DNNs
Multi Device
 Inference 

(Ours)

Device 
1

Device 
2

Device 
n

…
Model Selection & 

PartitionModel Partition

(c) Customizable Model Multi
Device Inference (Ours)

Figure 1: Comparison of different types DNN distributed
inference methods

ACM Reference Format:
Jieyu Lin, Minghao Li, Sai Qian Zhang, and Alberto Leon-Garcia. 2024. Mur-
muration: On-the-fly DNN Adaptation for SLO-Aware Distributed Inference
in Dynamic Edge Environments. In The 53rd International Conference on
Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland, Sweden. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3673038.3673154

1 INTRODUCTION
Deep neural networks (DNNs) are revolutionizing many fields such
as computer vision and natural language processing. These DNNs
play an important role in many edge computing applications such
as Augmented/Virtual Reality (AR/VR), Internet of Things (IoT),
and autonomous driving. Many of these applications have real-time
requirements, where they must meet strict Service Level Objects
(SLOs) for latency or accuracy. This is essential for ensuring safety
or enhancing the user experience.

Meeting SLOs of DNN inference in edge computing applications
is challenging, due to the limited computing resources of edge
devices and the dynamic network conditions. It is important to
consider both the DNN model selection and deployment strategy
in order to meet the accuracy or latency requirements.

One traditional way is to run DNN inference in a single edge
device or a cloud server, shown in Figure 1(a). However, it can often
be challenging to meet strict SLOs using these methods. When
running the inference of a DNN model in an edge device, it can

https://doi.org/10.1145/3673038.3673154
https://doi.org/10.1145/3673038.3673154


ICPP ’24, August 12–15, 2024, Gotland, Sweden Jieyu Lin, Minghao Li, Sai Qian Zhang, and Alberto Leon-Garcia

incur high latency due to the limited computing resources. On
the other hand, deploying DNN inference in a cloud server can
also result in high latency, attributed to the network delay from
communicating with a far-away cloud server.

Recent research has demonstrated that partitioning a DNNmodel
across multiple devices can enhance inference performance by re-
ducing latency. An illustration is shown in Figure 1(b). The papers
by Teerapittayanon [13] and Kang [7] explore the concept of parti-
tioning deep neural network models on a layer-by-layer basis. This
involves executing the initial layers on a local device and the subse-
quent layers on a separate remote node with greater computational
resources. The authors of [16] focus on spatial partitioning where
a DNN layer is partitioned into multiple sublayers and distributed
across multiple nodes for parallel execution.While these techniques
have the potential to enhance inference latency, they all use a single
fixed DNN for inference, thereby limiting adaptability during run-
time to handle varying accuracy and latency requirements under
complex environments. For instance, when varying bandwidth be-
tween 5-500 Mbps (shown in Figure 16(b)), a state-of-the-art fixed
DNNmethod only has a 0-44% SLO compliance rate. In other words,
using a static DNN fixes the accuracy and restricts the trade-off
between latency and accuracy.

To this end, we propose an SLO-aware distributed inference
framework termed Murmuration, which jointly adapts neural net-
work architecture settings and model partition strategy according
to the underlying infrastructure condition and SLOs. This is il-
lustrated in Figure 1(c). The goal is to offer a more dynamic and
adaptive solution to meet application SLOs under diverse network
characteristics.

Designing this framework entails addressing two primary chal-
lenges. Firstly, there exists a multitude of potential DNN models
and model configurations to select from, aiming to effectively cater
to diverse SLOs, network conditions, and device types. For instance,
for a 5-device (1 local and 4 remote) environment, with ten band-
width settings, ten network delay settings, and ten inference latency
constraints, we have 109 different settings (9 = 4 remote devices
× 2 metrics + 1 inference latency constraint). This further makes
preparing the DNNmodels and finding the appropriate models chal-
lenging. Secondly, to support mobility of devices at the edge and
varying network connectivity, it is imperative to dynamically adjust
the DNN model and its deployment in real-time during runtime to
consistently adhere to the SLO.

To tackle the first challenge of finding different DNN models
specialized for different environment settings and SLOs, we use
one-shot Neural Architecture Search (NAS) techniques to train par-
titionable DNNs. In effect, we train a "supernet", which is a large
network that encapsulates smaller subnetworks. Once trained, the
supernet provides a large number of submodels that can be sam-
pled according to specific targets. We use spatial partition, feature
map quantization, model depth, and model width as the search
criteria. This makes the learned model more partition-friendly in
comparison to other existing approaches.

To support real-time model adaptation, Murmuration formu-
lates the DNN model and partitioning strategy search as a goal-
conditionedmulti-task Reinforcement Learning (RL) problem,where
the SLO is the goal and network conditions construct different
tasks. Murmuration proposes a novel RL training algorithm called

Spatial partitioningLayer-wise partitioning

Figure 2: Background of layer-wise and spatial partitioning

SUPREME (Share, bUcketed, PRunE, Epsilon-greedy, Mutation Ex-
ploration), to improve exploration and data sharing across multiple
tasks. SUPREME maintains a bucketed replay buffer for different
SLO constraints and network conditions, and shares the model
selection and partitioning strategies between the buckets when
possible. It tries to explore and find critical SLOs and network con-
ditions points to reduce the search space, so it can attain better
joint DNN model and partitioning decision performance.

We implemented Murmuration to support efficient execution on
a wide range of edge devices. We conducted extensive experiments
for image classification tasks with a variety of network conditions
and SLOs. Under different device and network conditions, Murmu-
ration is able to achieve up to 6.7× latency reduction or up to 5%
higher accuracy compared to existing approaches. Murmuration
excels in meeting stringent SLOs concerning accuracy and latency.
Compared to existing approaches, it adapts more efficiently under
a wider range of network conditions, achieving up to 52% SLO
compliance rate improvement compared to the baselines.

The main contributions of the paper are:
• A novel approach for jointly tailoring neural network set-
tings and partition strategy for distributed inference based
on device network conditions and SLOs;

• A one-shot NAS supernet for distributed execution by using
new search space and training techniques;

• An RL training technique called SUPREME, which improves
exploration and sharing during training, and significantly
outperforms existing RL algorithms;

• Design and implementation of Murmuration, a SLO-aware
distributed inference system with smart model selection and
partitioning;

• Extensive evaluation of Murmuration, demonstrating its per-
formance and its ability to meet SLOs with high probability.

2 BACKGROUND & RELATEDWORKS
2.1 Distributed Inference
The literature on model-based distributed inference at the edge can
be broadly classified into: 1. Layer-wise partitioning; 2. Spatial par-
titioning. Figure 2 illustrates these two types of model partitioning.

Layer-wise partitioning executes early DNN layers in a local
compute node and offloads later layers to a remote node. [4] is one
of the earlier works that offloads the later stages of image classi-
fication computation to the cloud. Neurosurgeon [7] proposes a
method to automatically partition DNN models between a mobile
device and a cloud server based on network latency and energy



Murmuration: On-the-fly DNN Adaptation for SLO-Aware Distributed Inference in Dynamic Edge Environments ICPP ’24, August 12–15, 2024, Gotland, Sweden

One-shot 
NAS DNN 
Training

RL policy training 
for DNN model and 

partition strategy 
selection

Search spaces
(Spatial partitioning, 

quantization, depth, etc)

Devices 
types

SLO
range

Base 
DNN 

Model

Supernet

Devices type, network bandwidth and latency 

Edge devices

SLO

RL 
policy

Model 
selection & 
partitioning

Stage 1
DNN Training

(Offline)

Stage 2
Policy Training

(Offline)

Stage 3
Deployment

(Online)

Figure 3: Murmuration High-Level Operation Procedure

consumption. [5] goes a step further to design a Dynamic Adaptive
DNN Surgery Scheme that generates an optimal partition of a DNN
based on dynamic network conditions. The authors formulated the
problem as a min-cut problem and a optimal solution is proposed.
However, the performance gain from distributed execution is lim-
ited as the model structure and the network bandwidth can restrict
the inference latency. BranchyNet [13] utilizes exit points in initial
network layers for quick local decision-making. If early layers are
uncertain, computations are offloaded to the cloud for enhanced
accuracy. While this approach improves inference latency, its accu-
racy varies based on input data, leading to uncertainty in inference
outcomes.

Spatial Paritioning is another way model partitioning, where
each layer’s input feature is split into multiple parts, and multiple
nodes are used to execute them in parallel. The goal of these parti-
tioning methods is to reduce inference latency or single-node com-
putation load for inference tasks. DeepThings [17] tries to offload
inference tasks to a cluster of edge devices by partitioning the CNN
inputs of each layer spatially into multiple tiles. ADCNN [16] pro-
poses a method called Fully Decomposable Spatial Partition (FDSP)
to efficiently partition the input spatially. It adds zero padding to
the edge of each tile to reduce cross-partition dependency and to
use progressive training to assure high inference accuracy. [9] stud-
ied spatial partitioning using Matching theory and proposed an
adaptive partitioning method to automatically partition the input
to minimize communication time and reduce storage requirements.
CoEdge [14] designs a system for distributed inference using spatial
partitioning, but it focuses more on reducing the energy consump-
tion of the IoT computing devices. EdgeFlow [6] models DNNs
as Directed Acyclic Graphs (DAGs) and proposes a progressive
algorithm to optimize spatial partitioning.

The aforementioned works only consider a single network at a
time which limits inference performance and their ability to provide
flexible accuracy and latency tradeoff. In this paper, we co-design
the model and the system in order to optimize the inference perfor-
mance based on the application requirements and infrastructure
conditions. Moreover, we aim to develop a more general distributed
inference system that combines the advantages of the above two
types of distributed inference.

2.2 DNN model adaptation/switching
Some previous works focus on DNN model adaptation based on
resource constraints. One type of adaptation falls in the subfield of
one-shot NAS. "Once-for-all" [1] proposes a progressive shrinking
technique to train a "supernet" that contains a large number (1019)
of submodels with different kernel sizes, depths, and channel sizes.
Once trained, it can search for the best model for the target device
based on its resource constraint and latency constraint using an
evolutionary search algorithm. Later, Autoformer [2] extends this
approach to Visual Transformer. Another type of model adapta-
tion is investigated in the DNN server literature. INFaaS[11] and
[15] are frameworks that are used for AI-as-a-service running in
the cloud and select a model based on the load and underlying
resources. Although these works consider DNN model adaptation,
they all operate in a single device, while our work focuses on the
distributed execution of DNN across multiple devices with DNN
model adaptation.

3 REQUIREMENTS & TARGET SCENARIOS
We aim to create a real-time, adaptable framework for distributed
Deep Neural Network (DNN) inference, focusing on optimizing
DNN model selection and partitioning strategies based on user-
specific SLOs and network conditions. This framework focuses
more on image classification tasks with Convolutional Neural Net-
works (CNNs), but the same technique can also be further extended
to support other DNNs such as transformer-based models. The
framework operates on multiple diverse devices located in close
proximity with varying computational power and networking ca-
pabilities (in terms of network bandwidth and delay). Based on
user-specified SLOs in terms of latency or accuracy, the framework
selects DNN models and partitioning strategies in real-time by con-
sidering device-network attributes, ensuring the decision process
does not impact inference execution.

4 METHOD
In this section, we present the detailed design for Murmuration. The
operation of Murmuration has 3 stages: 1) DNN training; 2) Policy
training; and 3) Deployment. Figure 3 shows a high-level overview
of how the framework operates. During the first stage, we employ



ICPP ’24, August 12–15, 2024, Gotland, Sweden Jieyu Lin, Minghao Li, Sai Qian Zhang, and Alberto Leon-Garcia

NAS techniques to train a supernet DNN. This supernet contains
multiple submodels, which can be selected according to SLO and
network conditions. In the second stage, we employ our SUPREME
algorithm to train a RL policy capable of handling model selection
and partitioning. This RL policy is applied in the third stage, during
runtime, to make decisions on model selection and partitioning,
which guide the distributed execution of DNN inference.

Wewill first briefly describe partition-ready one-shot NASmodel
training. Then we focus on details of our SUPREME RL algorithm
for joint DNN model and partition decision-making.

4.1 Stage 1: Partition-Ready One-Shot NAS
Training

Spatial Partitioning Training 
Procedure

fmap 1x2 fmap 2x2 fmap

DNN Supernet

Feature Map 
Quantization

fmap
32 bits

8 bits

Figure 4: Supernet and Search Space (dynamic model depth
and width not shown)

To tailor a DNN for different network conditions and SLOs, we
need flexible DNN settings that can cover different situations. One-
shot NAS techniques are a promising approach to training a large
supernet that contains multiple submodels with different model ar-
chitecture settings. However, most of the one-shot NAS techniques
such as [1] are designed for a single device, which makes them not
suitable for our problem. Distributed execution of a DNN requires
the model to be partitionable layer-wise and spatial-wise. We also
need to minimize the amount of data that is transferred between
devices to reduce inference latency caused by communication.

With this in mind, we propose to include spatial partitioning [16]
and input quantization, on top of kernel size and block depth (num-
ber of layers), as search spaces during one-shot NAS training. Fig-
ure 4 shows a high-level illustration of this idea. For CNN models,
spatial partitioning enables the division of a CNN layer’s input
feature map into smaller patches (as shown in the yellow boxes in
Figure 4), allowing for separate computations to be performed on
each patch, which further enables the parallel computation for each
layer across multiple devices. To further reduce the communication
required between CNN operations on these patches, we leverage
the FDSP technique from [16], which adds zero padding to each
patch to eliminate the need for communication between neighbor
patches. Using FDSP improves the model’s performance in latency
due to reduced network communication and parallel execution, but
it can also have a small impact on the model’s accuracy. This char-
acteristic in fact provides us more flexibility in trading off between
accuracy and latency. We introduce different options for spatial
partition (e.g., 1×2, 2×2, etc) into the NAS training, which allows us

to select different spatial partition strategies at run time. This gives
us more variety of models to support different network conditions
and SLOs. Note that this spatial partitioning strategy can also be
applied to other DNN models such as Vision Transformers, where
different image patches are sent to different devices for parallel
attention computation in order to improve inference latency.

Furthermore, the input quantization search space involves the
quantization bitwidth selection for the inputs of each DNN layer.
This quantization option is useful when transmitting the inter-
mediate DNN data between two devices (such as in layer-wise
partitioning), as it can effectively reduce the communication vol-
ume during transmission. With these search spaces for one-shot
NAS, we obtain a partition-ready DNN supernet that can be used
by the following stages for policy training and deployment.

4.2 Stage 2: Reinforcement Learning Problem
Formulation and Policy

4.2.1 Formulation. Similar to prior research in NAS [10] and DNN
placement [8], we employ RL as our approach to select the submodel
in supernet DNN produced in the first stage. Nonetheless, our
challenge diverges from earlier research in two aspects: 1) We are
making joint decisions about both the submodel configuration and
the partition/placement strategy, whereas prior studies typically
focus on only one of these aspects. 2) Our objective is to meet
user-specified SLOs across a wide spectrum of network conditions,
significantly complicating our problem compared to prior work.

We formulate the above problem as a goal-condition multi-task
RL problem. The SLO provided by users is considered the goal
for the RL problem. Different network conditions of the devices
are considered different tasks. Intelligent RL policy needs to be
developed to select a DNN submodel and partition strategy to meet
the SLO under diverse network conditions.

More specifically, the model selection and partitioning problem
is formulated as a sequential decision-making problem where the
policy makes decisions for each DNN layer sequentially. Each layer
of DNN model is separated into multiple actions, each either cor-
responding to a DNN model setting 𝑦𝑖 of the layer 𝑘 (𝑎𝑘𝑦𝑖 ) or the
device selection for partitions 𝑝 𝑗 of the layer (𝑎𝑘𝑝 ), where𝑦𝑖 is the 𝑖th
model setting and 𝑝 𝑗 is the 𝑗th partition in the layer. We define all
the actions 𝑎 = {𝑎0

𝑦0 , ..., 𝑎
0
𝑦𝑌

, 𝑎0
𝑝0 , ..., 𝑎

0
𝑝𝑃
, ..., 𝑎1

𝑦0 , ..., 𝑎
𝑚
𝑦0 , ...}, where 𝑌

is the number of model settings for each layer, 𝑃 is the maximum
number of partition in each layer, and𝑚 is the total number layers.
The goal of this RL problem is to optimize the following formula:

maxE𝑐∼𝑝 (𝑐 ) [E𝑏∼𝑝 (𝑏 ),𝑙∼𝑝 (𝑙 ) [E𝜏∼𝜋 (𝑟 (𝑎))]] (1)

where 𝑟 is the reward of the model, 𝑐 is the SLO, 𝑏 is a vector of the
bandwidths of all the devices, 𝑙 is the network delays of all devices,
𝜋 is the RL policy, and 𝜏 is the trajectory. In this work, there are two
ways to define the SLO type.With the goal-conditioned formulation,
if inference latency is used as SLO, we have:

𝑟 =

{
𝛼𝐴 − 𝛽 if 𝐿 ≤ 𝐿𝑆𝐿𝑂
0 otherwise (2)

and if inference accuracy is used as SLO:

𝑟 =

{
𝛼𝐿 − 𝛽 if 𝐴 ≥ 𝐴𝑆𝐿𝑂

0 otherwise (3)



Murmuration: On-the-fly DNN Adaptation for SLO-Aware Distributed Inference in Dynamic Edge Environments ICPP ’24, August 12–15, 2024, Gotland, Sweden

where 𝐴, 𝐴𝑆𝐿𝑂 are inference accuracy and accuracy constraint re-
spectively, 𝐿, 𝐿𝑆𝐿𝑂 are the inference latency and latency constraint
respectively, and 𝛼 , 𝛽 are hyperparameters.

4.2.2 RL Policy Design. Using the above formulation, we perform
model setting and partitioning strategy selection through sequen-
tial decision-making. Figure 5 shows the model of the policy we
used. The backbone of our policy model is the Long Short-Term
Memory (LSTM) network, which facilitates the propagation of
information across successive decisions. An LSTM is preferred
over a transformer in this instance due to its lower computational
power requirement. The state of the policy, denoted as 𝑠 , consists
of the DNN’s model settings decided so far (𝑚𝑙−1), the SLO con-
straint (𝑐), and the network bandwidth𝑏𝑑1 , 𝑏𝑑2 , ...𝑏𝑑𝑛 , network delay
𝑙𝑑1 , 𝑙𝑑2 , ..., 𝑙𝑑𝑛 , and device type 𝑢𝑑1 , ...𝑢𝑑𝑛 for devices {𝑑1, 𝑑2, ..., 𝑑𝑛}.
For each category of action (e.g., spatial partitioning, quantization,
etc.), the model incorporates specialized fully connected layers.
Through a sequence of decisions for both model setting and parti-
tion placement, we choose the strategy that meets the SLO under a
specific network condition.

LS
TM

Latency/Accuracy 
constraint

Devices type, 
bandwidth, delay 

Model config (ml-1)

LS
TM

hidden 
state

LS
TM

Layer k
Channel 

Size

LS
TM

Layer k
Partition 

#1 Device 
Select

LS
TM

Layer k
Partition 

#2 Device 
Select

Model setting selection Model partition strategy

Repeat for layer k = 1 to m

hidden 
state

hidden 
state

hidden 
state

Layer k
Spatial 

Partitioning

Layer k
Quantization

Figure 5: RL policy design

4.3 Stage 2: Challenges of Existing RL Methods
One may consider solving the above problem formulation using tra-
ditional RL algorithms such as Proximal Policy Optimization (PPO)
or Deep Q Network (DQN). However, our experiments showed
that traditional RL algorithms give suboptimal performance. We
believe this is due to the high dimensionality of our problem and
the limited exploration of traditional RL algorithms. With the goal-
conditioned formulation, the model would obtain 0 rewards if the
SLO constraint is not met. In this case, the RL model can often
get no signal if the exploration does not end up finding a model
and partition combination that satisfies the SLO. This problem is
further exacerbated with the multi-task setting where the number
of different devices’ network condition configurations is extremely
large, This makes the exploration even harder as the network needs
to explore and find trajectories that can cover the different net-
work conditions while satisfying the SLO. Our evaluation results
in Figure 12 confirm this hypothesis.

Goal-Condition Supervised Learning (GCSL) is shown to have
better or similar performance compared to the standard RL tech-
nique for goal-reaching tasks [3]. It learns goal-reaching behaviors
without the need for external demonstrations or a value function.

It collects trajectories, relabels them using hindsight to be opti-
mal for the goals that were actually reached, and uses supervised
imitation learning to train an improved goal-conditioned policy.
However, GCSL also suffers from poor exploration. To Solve the
above problem, we propose the SUPREME algorithm below.

4.4 Stage 2: RL Training with SUPREME

Policy 
training Tr

ai
ni

ng
 D

at
a 

S
ha

rin
g

E
ps

ilo
n-

gr
ee

dy
 +

 
un

ce
rta

in
ty

 
ex

pl
or

at
io

n

Policy Network

Data 
Collection

Reward-Filtered Bucketed
Replay Buffer

Data Augmentation & Processing 

Environment

Sharing Pruning Mutation

Figure 6: SUPREME RL Training Overview

In the SUPREME training flow, as illustrated in Figure 6, a central
component is the reward-filtered bucketed replay buffer, holding
replay data used for policy training. The training comprises two
loops. The lower loop aligns with conventional RL policy training,
involving using replay buffer data for policy training and apply-
ing the updated policy with exploration to accumulate more data
into the replay buffer. We use GCSL for training the RL policy.
The upper loop focuses on optimizing the replay buffer through
processes such as sharing, pruning, and mutating data, aiming to
augment the exploration capacity of the RL training. SUPREME
differs from existing RL training techniques in three main areas: 1)
Replay buffer structure; 2) Training data share across tasks; 3) Re-
play buffer augmentation through sharing, pruning, and mutation.
Next, we provide details of the components in the figure.

4.4.1 SUPREME Algorithm. The SUPREME algorithm is designed
to enhance exploration within our specific problem domain. It inte-
grates bucketed data sharing, data pruning, epsilon-greedy explo-
ration, and mutation mechanisms. The foundation of SUPREME’s
design is the following observation:

A strategy (model selection and partitioning), discovered for a
specific SLO and network conditions constraint, effectively serves as a
lower bound when these constraints are relaxed.

For instance, if a strategy is discovered for a specific SLO, band-
width, and network delay, it remains applicable when there is a
higher inference latency allowance, increased bandwidth, or re-
duced network delay. While this strategy might not represent the
optimum solution, it serves as a valuable lower bound to facilitate
our search process for high-reward strategies. Figure 7 shows an
example of this observation in 2D. This idea is applicable to higher
dimensional space as well. In 3D, for example, the grey area would
be a box.

This observation allows us to share the exploration results
across multiple tasks, which can significantly increase the data
available for training under different constraints. From our observa-
tion, this can quickly boost the policy’s performance under a large



ICPP ’24, August 12–15, 2024, Gotland, Sweden Jieyu Lin, Minghao Li, Sai Qian Zhang, and Alberto Leon-Garcia
S

LO
 c

on
st

ra
in

t 
(In

fe
re

nc
e 

La
te

nc
y)

Bandwidth

Lower bound for the grey area

Can be removed if the 
performance is not as 
good as the red point 

2 Dimensional Space

Figure 7: Illustration of a strategy as a lower bound for re-
laxed constraints (in 2D)

number of constraints, and in turn, improve the exploration in the
next iteration.

B
an

dw
id

th

SLO (Inference Latency)

Top reward queue

Each entry contains:
Trajectory, Reward, Latency, 

Figure 8: Bucketed Replay Buffer with reward filtering and
bucket tree

Bucketed Replay Buffer: In the SUPREME implementation, we
utilize a bucketed replay buffer, enhancedwith reward prioritization.
This is illustrated in Figure 8. The process begins by discretizing
the constraint space into distinct buckets. Each bucket comprises a
queue to store replay trajectories, retaining only the top 𝑛 reward
data, where 𝑛 symbolizes the queue size.

When the exploration mechanism yields new trajectory data, it
undergoes a reward and state relabeling process. Subsequently, if
the data is among the top 𝑛 rewards, it is added to the appropriate
bucket.

To enable efficient replay data sharing across various tasks, a
tree structure is constructed among the buckets. It’s worth noting
that the tree structure varies based on the dimensionality of the
constraint space. For instance, a 2D constraint space results in a
binary tree as depicted in Figure 7, while a 3D space gives rise to a
ternary tree, and so on.

Data Share Across Tasks: During training, we share replay
data across multiple buckets by following the reverse direction
of the tree. If a bucket is empty, we use the data in the nearest
ancestor’s bucket. Figure 9(a) illustrates this idea. This ensures that
all the buckets contain data when sampled (as long as a non-empty
ancestor bucket is available). The tree structure design also makes
sure we can look up data quickly.

Data Pruning: Another key piece of information obtained from
our aforementioned observation is that: if we find a strategy 𝑎𝑛𝑒𝑤
with a lower reward (the blue or yellow dots in Figure 7) than the
lower bounded strategy 𝑎𝑙𝑏 (red dot in Figure 7), then this 𝑎𝑛𝑒𝑤
strategy can be pruned as it’s not as good as the low bound strategy.

B
an

dw
id

th

SLO (Inference Latency)

Data Pruning Direction

High rewardLow reward

B
an

dw
id

th

SLO (Inference Latency)

Data Share
Empty bucket

(a) Data Share across buckets

B
an

dw
id

th

SLO (Inference Latency)

Data Pruning Direction

High rewardLow reward

B
an

dw
id

th

SLO (Inference Latency)

Data Share
Empty bucket

(b) Data pruning

Figure 9: Data share and pruning in bucketed replay buffer

This observation essentially allows us to cover the continuous
constraint space using a discrete number of strategies. Mathemati-
cally, SUPREME turns the RL optimization objectives from Equa-
tion 1 into the following:

maxE𝑐𝑖 ,𝑏𝑖 ,𝑙𝑖∼𝑝 (z) [E𝜏∼𝜋 (𝑟 (𝑎))] (4)
where 𝑐𝑖 , 𝑏𝑖 , 𝑙𝑖 is a critical SLO and network condition, and z is a

set of all critical configurations. This method allows us to focus on
fewer data points while not compromising performance.

To implement this in our bucketed replay buffer, we use the tree
structure of the buckets to help with the pruning task. Again we
traverse the reverse direction of the tree and if the nearest ancestor
bucket has higher rewards, then data in this bucket can be pruned.
Figure 9(b) illustrates this idea.

Data Mutation: Lastly, we add data mutation to data in the
replay buffer. This basically tries to randomly perturb some actions
of the trajectory data in the replay buffer to get new trajectory data,
which is then relabeled and added back to the replay buffer. We
also added simple mutation heuristics such as improving execution
locality and updating suboptimal buckets.

5 MURMURATION IMPLEMENTATION

Model 
Selection and 

Partition 
Decision 

Network 
Monitoring 

(Bandwidth, Delay) Executor

Edge Device 1

Edge Device 2
SLO API

Strategy Cache

Monitoring 
data Predictor

Scheduler

Model Reconfig

In Memory Supernet
Executor

Remote 
Execution

Executor

Edge Device 3

Figure 10: Murmuration Implementation Diagram

We implemented Murmuration to support the deployment of
distributed inference. This section focuses on the deployment and
runtime (i.e. stage 3 of the Figure 3) of the Murmuration framework.
Figure 10 shows the high-level diagram of the system. We will
provide details of each module below: The Network Monitoring



Murmuration: On-the-fly DNN Adaptation for SLO-Aware Distributed Inference in Dynamic Edge Environments ICPP ’24, August 12–15, 2024, Gotland, Sweden

module monitors network delay and bandwidth using active and
passive methods to measure connectivity between local and remote
devices. The SLO API enables users to specify latency or accuracy
SLOs as a scalar value.

The Monitoring data Predictor module predicts short-term
monitoring data change, which allows us to precompute the model
selection and partition strategy in advance. It utilizes a lightweight
linear regression method for monitoring data prediction.

The Model Selection and Partition Decision module utilizes
the RL model to determine the optimal DNN model selection and
partitioning, based on both real or predicted monitoring data.

A Strategy Cache is utilized to store the known constraint (net-
work condition and SLO) to strategy (model selection and partition)
mapping. This reduces the need for redundant execution of the
RL model. The model selection and partitioning decisions are sent
to theModel Reconfig module for updating the local submodel.
Then the Scheduler dispatch different parts of the model to be run
locally or remotely. We use gRPC for device communication.

5.1 Fast Model Adaptation
The Murmuration system decides on model selection and partition-
ing before each inference request to adapt to changing network
conditions. On top of the relatively fast RL algorithm in decision-
making, a Strategy Cache is used to further reduce the need to fre-
quently execute the RL algorithm. Moreover, The Monitoring Data
Predictor forecasts network conditions, allowing for precomputa-
tion with RL algorithm and caching of strategies for fast adaptation.

Furthermore, we load the full supernet model in memory instead
of loading only the submodel. This is desirable as we can perform
model switching without memory copies or disk access, and thus
significantly reduce the model switch time.We show in Section 6.4.5
that we can perform model switching in a few milliseconds. These
techniques combine to enable fast model adaptation during runtime.

6 EVALUATION
To assess the effectiveness of the Murmuration framework, we first
evaluate the performance of the SUPREME RL algorithm. Following
that, we evaluate the overall performance of the Murmuration
system when deployed across multiple edge devices. Evaluations
are done on two scenarios:

• AugmentedComputing Scenario: This configuration com-
prises one device with lower computational capacity, desig-
nated as the local device, paired with a higher computational
power device equipped with a GPU. An example use case is
AR/VR where a resource-constrained headset is often paired
with a more powerful device. In our experiement, we use
one Raspberry Pi 4 and one Desktop with AMD Ryzen 5500
CPU and Nvidia GTX1080 GPU.

• Device Swarm Scenario: This configuration consists of five
edge devices with modest computational power. One acts as
the local device, and the remaining four are considered as
remote devices. Example use cases are cooperative robots and
drones in search and rescue, remote sensing, and agriculture.
We used 5 Raspberry Pi 4 in our experiment.

6.1 SUPREME Algorithm Evaluation
In the evaluation of the SUPREME algorithm, we focus on the
two main metrics: reward and SLO compliance rate. We compare
SUPREME to the following baselines:

• PPO [12]: Proximal Policy Optimization is a state-of-the-art
on-policy RL algorithm.

• GCSL [3]: Goal-Condition Supervised Learning is an iter-
ative supervised learning algorithm for goal-condition RL
problems.

6.1.1 Training Experiment Setups. Experiments are done for the
two aforementioned scenarios. We allow each device to have dif-
ferent network latency and bandwidths. We set a maximum and
minimum value for all the metrics: network delays, bandwidths,
and latency SLOs. For each of these metrics, we use 10 discrete
points for training. Note that during inference time, continuous
values can be used for these metrics.

For model selection in SUPREME, we train a supernet using a
variance of MobileNetV3 as the base network. The supernet consists
of 6 customizable settings for each layer: varying spacial partition-
ing (1x1 to 2x2 partitioning); input feature quantization (32bits
to 8bits); image resolution (224 to 160); model block depth (4 to
2), model kernel size (7 to 3). This supernet is trained with the
ImageNet data, and an accuracy predictor is used for accuracy pre-
diction during RL policy training. For the Policy network, we use
a 1-layer LSTM with 256 hidden units, and each action type (e.g.
model setting, device selection) uses a different fully connected
layer for generating the output.

For SUPREME training, we also incorporate curriculum learning
where we gradually add in new constraint space. For instance, we
start with varying SLOs and device 1 bandwidth, then we slowly
add device 1 delay, device 2 bandwidth, and so on. For both GCSL
and Murmuration, two trajectories (one for the max size submodel
and one for the min size submodel) are used to bootstrap training.
We run each training 3 times to obtain the average training reward
and variance.

6.1.2 RL Policy Training Results. Figure 11 shows the training per-
formance in terms of average reward achieved versus the number of
training steps, when using inference latency as the SLO. The average
reward is the mean of reward across all validation constraints (i.e.
evenly distributed points in the SLO and network conditions space).
We see that SUPREME significantly outperforms the baselines in
terms of reward achieved. This illustrates SUPREME’s enhanced
efficiency in exploring model selection and partition strategies,
leading to high inference accuracy.

Figure 12 shows the normalized SLO compliance rate throughout
the training. Since some constraints are not achievable (e.g. 100ms
inference latency constraint with a network delay > 100ms), we
normalize the compliance rate by the highest achievable compli-
ance rate of all methods (i.e. focusing on the satisfiable constraints).
SUPREME is able to achieve a much higher compliance rate than
the baselines. This again underscores the advantages of SUPREME’s
data sharing and exploration mechanisms. Moreover, SUPREME
is able to learn the policy with a relatively low amount of data,
attributed to the bucketed reward-filtered replay buffer data struc-
ture. Overall, SUPREME provides an effective way to train an RL



ICPP ’24, August 12–15, 2024, Gotland, Sweden Jieyu Lin, Minghao Li, Sai Qian Zhang, and Alberto Leon-Garcia

0 2500 5000 7500 10000 12500 15000 17500 20000
Training steps

0.0

0.5

1.0

1.5

Av
er

ag
e 

Re
wa

rd

GCSL PPO Murmuration SUPREME (Ours)

(a) Augmented Computing Scenario

0 2500 5000 7500 10000 12500 15000 17500 20000
Training steps

0.0

0.5

1.0

Av
er

ag
e 

Re
wa

rd

GCSL PPO Murmuration SUPREME (Ours)

(b) Device Swarm Scenario

Figure 11: Average Reward Throughout RL Policy Training with Different Number of Devices

0 2500 5000 7500 10000 12500 15000 17500 20000
Training steps

0.00

0.25

0.50

0.75

1.00

SL
O 

Co
m

pl
ia

nc
e 

Ra
te GCSL PPO Murmuration SUPREME (Ours)

Figure 12: SLOCompliance Rate Throughout RL Policy Train-
ing

policy for selecting the DNN model and partitioning strategy under
a large number of SLO, network delay, and bandwidth constraints.

6.2 Murmuration Distributed Inference
Evaluation

We evaluated the overall performance of Murmuration when de-
ployed on distributed devices at the edge. We compare the Murmu-
ration’s performance with other distributed inference frameworks.

6.2.1 Baselines. We compare Murmuration to the following dis-
tributed inference work:

• Neurosurgeon [7]: Layer-wise partition framework that
splits DNN on two devices for inference acceleration.

• ADCNN [16]: A spatial partition framework that partitions
feature maps spatially across multiple devices for parallel
execution and inference speed up. It uses a finetuned CNN
to reduce communication.

We combine these baseline distributed methods with different ex-
isting DNN models where possible to get a more comprehensive
list of baselines.

6.3 Experiment Setup
We evaluate the Murmuration system for the two scenarios intro-
duced at the beginning of this section. These physical devices are
connected to an Ethernet switch with 1GB wired connections. We
control the network bandwidth and latency by using the tc traffic
control tool. Each data point is collected by running 20 inferences
with ImageNet images and taking the average inference latency.

6.4 Results
6.4.1 Inference Latency as SLO. We first evaluate Murmuration’s
performance when constraining on the inference latency. We vary
the SLOs and network conditions, and compare inference accu-
racy. Figure 13(a) and Figure 14 depict the inference accuracy for
the Augmented Computing Scenario and Device Swarm Scenario
under various constraints, respectively. In Figure 13(a), we fix the
latency constraint (at 140ms) and vary the bandwidth and network
delay. For Figure 14, we keep the network delay fixed (at 20ms)
and change the Latency SLO constraint and bandwidth of one out
of five devices. For each subfigure, a dot is shown if the specific
method is able to satisfy the latency SLO constraint. From these re-
sults. We can conclude that Murmuration is able to adapt the model
setting and the placement in order to meet the SLO. Murmuration
has the largest coverage of different network conditions while sat-
isfying the SLO. Notice that some of the high accuracy baselines
such as Neurosurgeon + DenseNet161 (77.1%) and Neurosurgeon +
Resnext101 (79.3%) have DNN models that are resource demanding,
and are not able to satisfy any SLO in Figure 13(a). Murmuration
is also able to achieve the highest accuracy while satisfying the
latency SLO constraint. More specifically, Murmuration achieves
up to 5% higher accuracy compared to other baselines. This is at-
tributed to Murmuration’s model adaptability. A 3-D illustration of
this is provided in Figure 13(a).

6.4.2 Inference Accuracy as SLO. Next, we look at Murmuration’s
performance when we use inference accuracy as the SLO. Here, we
want to compare the inference latency between different methods
when a certain inference accuracy is required. Figure 15 shows
inference latency when constrained on different inference accura-
cies (each subfigure corresponds to a different bandwidth). Again,
we can see Murmuration being able to adapt its model and parti-
tion strategy to achieve lower inference latency when the accuracy
constraint tightens. Across different bandwidths (subfigures), the
Murmuration’s latency curve also changes its shape to be lower
when more bandwidth is available. Furthermore, Murmuration is
able to cover the most accuracy constraint range while maintaining
a low inference latency. In fact, Murmuration is able to achieve up
to 85% (6.7×) latency reduction at high accuracy constraints when
compared with baselines that can also satisfy the SLO. Overall,
Murmuration is able to customize its model selection and partition
strategy to efficiently meet inference accuracy SLO.



Murmuration: On-the-fly DNN Adaptation for SLO-Aware Distributed Inference in Dynamic Edge Environments ICPP ’24, August 12–15, 2024, Gotland, Sweden

100 200 300 400
Bandwidth (Mbps)

74

76

78

Ac
cu

ra
cy

 (%
)

Network Delay 100.0ms

100 200 300 400
Bandwidth (Mbps)

Network Delay 75.0ms

100 200 300 400
Bandwidth (Mbps)

Network Delay 50.0ms

100 200 300 400
Bandwidth (Mbps)

Network Delay 25.0ms

100 200 300 400
Bandwidth (Mbps)

Network Delay 5ms

Neurosurgeon + MobileNetV3
NeuroSurgeon + Resnet50

Neurosurgeon + Inception
Neurosurgeon + DenseNet161

Neurosurgeon + Resnext101
ADCNN + MobileNetV3

ADCNN + Resnet50
Murmuration (Ours)

(a) Results Grouped by Network Delay (b) 3D plot

Figure 13: Augmented Computing Scenario: Inference Accuracy for Different Network Conditions @ Latency SLO = 140ms

101 102

Bandwidth (Mbps)

74

76

78

Ac
cu

ra
cy

 (%
) Latency SLO: 2000ms

101 102

Bandwidth (Mbps)

1000ms

101 102

Bandwidth (Mbps)

600ms

101 102

Bandwidth (Mbps)

500ms

101 102

Bandwidth (Mbps)

400ms

ADCNN+MobileNetV3
ADCNN+Resnet50

ADCNN+Densenet161
ADCNN+Resnext101_32x8d

Neurosurgeon + MobileNetV3
Neurosurgeon + Resnet50

Murmuration (Ours)

Figure 14: Device Swarm Scenario: Inference Accuracy for Different Latency SLO and Bandwidth @ Network delay=20ms

72.5 75.0 77.5
Accuracy (%)

100

200

300

400

In
fe

re
nc

e 
La

te
nc

y 
(m

s)

Bandwidth: 50.0Mbps

72.5 75.0 77.5
Accuracy (%)

100.0Mbps

72.5 75.0 77.5
Accuracy (%)

150.0Mbps

72.5 75.0 77.5
Accuracy (%)

200.0Mbps

72.5 75.0 77.5
Accuracy (%)

250.0Mbps

72.5 75.0 77.5
Accuracy (%)

300.0Mbps

72.5 75.0 77.5
Accuracy (%)

350.0Mbps

72.5 75.0 77.5
Accuracy (%)

400.0Mbps

Neurosurgeon + MobileNetV3
NeuroSurgeon + Resnet50

Neurosurgeon + Inception
Neurosurgeon + DenseNet161

Neurosurgeon + Resnext101 Murmuration (Ours)

Figure 15: Inference Latency for Augmented Computing Scenario when using Accuracy SLO (Lower Inference Latency is Better)

6.4.3 SLO Compliance Coverage Comparison. One of the key ben-
efits of Murmuration is the ability to support challenging network
conditions. We demonstrate the SLO compliance rate of Murmura-
tion and some of the best baselines under both latency and accuracy
SLO. Given a fixed latency and accuracy SLO, we run each method
across a wide range of network delays and bandwidth settings. Then
compliance rate is defined as the ratio of the number of network
settings that the method can achieve the SLO. Figure 16 shows the
SLO compliance rate for the two experiment scenarios under differ-
ent latency and accuracy constraints. We can see that Murmuration
is able to significantly improve the compliance rate of by up to
52%, demonstrating Murmuration’s ability to adapt and continue
to satisfy SLO under diverse network settings.

6.4.4 Scalability of Murmuration. We analyze the scalability of
Murmuration by evaluating its inference latency when working
with different numbers of devices (Raspberry Pi 4 in this case)

under a fixed network condition (1Gbps link with 2ms delay) with
an accuracy SLO. The results are shown in Figure 17. With the
increased number of devices, we can obtain 1.7x to 4.5x latency
speed up compared to executing in a single device. The scalability
bottleneck is mainly attributed to the communication overhead and
execution time for the centrally executed fully connected layers.

6.4.5 Runtime Efficiency Evaluation. Another key aspect of Mur-
muration is the ability to make the model selection and partition
adaptation during run time. We run Murmuration’s RL policy in
two kinds of devices to measure the time it needs to make an
adaption decision. We compare it to Evolutionary Search which
is a commonly used technique for finding submodel in supernet.
Figure 18 shows the results. We can see that Murmuration’s RL
approach significantly reduces the time needed to make a deci-
sion. The decision-making is about 1 second and 30 milliseconds in
Raspberry Pi and GPU, respectively. This performance should be



ICPP ’24, August 12–15, 2024, Gotland, Sweden Jieyu Lin, Minghao Li, Sai Qian Zhang, and Alberto Leon-Garcia

100 120 140
Latency SLO (ms)

0

20

40

60

80

Co
m

pl
ia

nc
e 

Ra
te

 (%
)

NeuroSurgeon + Resnet50
Neurosurgeon + Inception
Murmuration (Ours)

(a) Compliance rate for the augmented
computing scenario with 75% accuracy SLO.
40 network settings (delay: 5-100ms; bw: 50-
400 Mbps)

600 1000
Latency SLO (ms)

0

25

50

75

100

Co
m

pl
ia

nc
e 

Ra
te

 (%
)

ADCNN+MobileNetV3
ADCNN+Resnet50
Murmuration (Ours)

(b) Compliance rate for the device
swarm scenario with 74% accuracy
SLO. 9 network settings (delay: 20ms;
bw: 5-500 Mbps

Figure 16: SLO Compliance Rate Comparison

1 2 3 4 5 6 7 8 9
Number of Devices

100

200

300

400

500

600

La
te

nc
y 

(m
s)

SLO @ 75% accuracy
SLO @ 76% accuracy

Figure 17: Inference
latency with different
number of devices

Evolutionary
search

Murmuration
RL (Ours)

Models Search Method

10 1

100

101

102

103

Se
ar

ch
 ti

m
e 

(S
ec

on
d)

50.7

0.03

778.0

1.05

AMD Ryzen 5500 & Nvidia GTX1080 GPU
Raspberry Pi

Figure 18: Average Reward
Throughout RL Policy Training
with Different Number of Devices

sufficient for most model adaptation tasks, especially if we use our
precompute technique discussed in Section 5.

Next, we also evaluate the time for Murmuration’s supernet
to change its submodel. We compare it to the time of switching
between different types of existing models. Figure 19 shows the
results. We assume limited memory and switching different types
of models will require reloading the weights. Murmuration’s model
can adapt its setting significantly faster than changing the model
type as the supernet is preloaded in memory. This demonstrates the
practicality of Murmuration, and it also justifies our design choice
to load the complete supernet in memory.

Figure 19: Model Switch Time Comparison (Raspberry Pi 4)

7 CONCLUSION
In conclusion, this work presents Murmuration, a framework for
optimizing distributed inference at the edge. Murmuration, utilizing
RL and one-shot NAS, dynamically customizes and partitions DNN
models, addressing challenges posed by diverse network conditions,
limited resources, and vast search spaces. It adapts to various net-
work conditions and SLOs, demonstrating enhanced performance
in inference accuracy and latency.

REFERENCES
[1] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-

for-all: Train one network and specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791 (2019).

[2] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. 2021. Autoformer:
Searching transformers for visual recognition. In Proceedings of the IEEE/CVF
international conference on computer vision. 12270–12280.

[3] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Ben-
jamin Eysenbach, and Sergey Levine. 2019. Learning to reach goals via iterated
supervised learning. arXiv preprint arXiv:1912.06088 (2019).

[4] Johann Hauswald, Thomas Manville, Qi Zheng, Ronald Dreslinski, Chaitali
Chakrabarti, and Trevor Mudge. 2014. A hybrid approach to offloading mobile
image classification. In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 8375–8379.

[5] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. 2019. Dynamic adaptive
DNN surgery for inference acceleration on the edge. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 1423–1431.

[6] Chenghao Hu and Baochun Li. 2022. Distributed inference with deep learn-
ing models across heterogeneous edge devices. In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 330–339.

[7] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[8] Hao Lan, Li Chen, and Baochun Li. 2021. Accelerated device placement optimiza-
tion with contrastive learning. In Proceedings of the 50th International Conference
on Parallel Processing. 1–10.

[9] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco.
2020. Distributed inference acceleration with adaptive DNN partitioning and
offloading. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 854–863.

[10] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In International conference on
machine learning. PMLR, 4095–4104.

[11] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.
{INFaaS}: Automated model-less inference serving. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 397–411.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[13] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
Branchynet: Fast inference via early exiting from deep neural networks. In 2016
23rd international conference on pattern recognition (ICPR). IEEE, 2464–2469.

[14] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang. 2020. Coedge:
Cooperative dnn inference with adaptive workload partitioning over heteroge-
neous edge devices. IEEE/ACM Transactions on Networking 29, 2 (2020), 595–608.

[15] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth Garg.
2020. {Model-Switching}: Dealing with Fluctuating Workloads in {Machine-
Learning-as-a-Service} Systems. In 12th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 20).

[16] Sai Qian Zhang, Jieyu Lin, and Qi Zhang. 2020. Adaptive distributed convolutional
neural network inference at the network edge with ADCNN. In Proceedings of
the 49th International Conference on Parallel Processing. 1–11.

[17] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018.
Deepthings: Distributed adaptive deep learning inference on resource-
constrained iot edge clusters. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2348–2359.


	Abstract
	1 Introduction
	2 Background & Related Works
	2.1 Distributed Inference
	2.2 DNN model adaptation/switching

	3 Requirements & Target Scenarios
	4 Method
	4.1 Stage 1: Partition-Ready One-Shot NAS Training
	4.2 Stage 2: Reinforcement Learning Problem Formulation and Policy
	4.3 Stage 2: Challenges of Existing RL Methods
	4.4 Stage 2: RL Training with SUPREME

	5 Murmuration Implementation
	5.1 Fast Model Adaptation

	6 Evaluation
	6.1 SUPREME Algorithm Evaluation
	6.2 Murmuration Distributed Inference Evaluation
	6.3 Experiment Setup
	6.4 Results

	7 Conclusion
	References

